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101 COINS

ALEXANDRE BOROVIK

1. The Problem

This paper discusses the following elementary mathematics problem:

101 Coins. You are given 101 coins such that after removal
of any one of them the remaining coins can be redistributed
in two groups of 50 coins in such a way that the sum of
values of coins in each group is the same. Prove that all
coins have equal values.

It has an elementary solution, but also happens to be surprisingly
deep.

2. A solution without a single formula

What follows is a solution which could be explained to junior school
pupils. Well, I have to insert a caveat: to junior school pupils who have
a sufficiently long attention span (developed, for example, by building
reasonably sophisticated models from Lego, of by coding in SCRATCH,
or by learning some mathematics beyond school curriculum. ).

There is a good reason for this requirement. In the original formula-
tion with coins, the problem is next to impossible for a schoolchild — it
needs to be simplified first by generalisation and made more manage-
able by nomination, then approaches to a potential solution need to
be found by observing invariance under certain transformations of the
data, and, on the top of that all, we need to use abstraction. All these
tools are routinely used in solving so-called mathematical olympiad
problems — and in research level mathematics.
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2.1. Generalisation

It comes first, and it is easier for children. First of all, 101 appears
to be just an arbitrary odd integer. Why odd? Because if the number
of coins is even, then after removal of one coin it becomes odd, and
remaining coins cannot be divided in two groups with equal numbers
of coins.

So we have infinitely many problems, one for each odd number. Even
if we continue to use 101 in our solution, we have to take care of ensuring
that 101 could be replaced by any odd natural number.

2.2. Nomination

Then comes nomination: we need a name for collections of coins
appearing in these problems.

So let us call a collection of coins peculiar if it contains an odd number
of coins and, no matter which coin is removed, the remaining coins can
be divided in two groups which contain equal number of coins and also
have equal sums of values of their coins.

Having a name for the property allows us to ask a question: what
kind of manipulations with coins preserves this property: peculiarity?

2.3. Invariance and abstraction

After some guesses we can notice that if we decrease or increase the
value of each coin by the same amount, for example, subtract 1 from
the value of each coin, a peculiar collection of coins remains peculiar
— an adult mathematician would say that the peculiarity is invariant
under this transformation.

But this is a rather unnatural operation on real coins, it is known as
debasement of the coinage and, I am afraid, is likely to be a criminal
offence in this country'. So it is convenient to forget about coins and
work with natural numbers. This act of abstraction suddenly gives us
freedom of action.

So it is useful to remember this guiding principle:

ABSTRACTION IS FREEDOM.

TThe crime was popular in old times when coins were made of gold or silver, which led weaker
souls to temptation to chip a little bit of precious metal off the coin.
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After applying this tiny bit of abstraction our problem looks that
way:

We are given a set of 101 natural numbers, and after re-
moval of any one of them from the list the remaining num-
bers can be redistributed in two groups of 50 numbers in
such a way that the sum of numbers in each group is the
same. Prove that all numbers are equal.

Of course, it is natural to apply the term peculiar not only to sets of
coins but also to sets of natural numbers and to sets of integers (and,
in later discussion — to sets of real numbers).

2.4. First breakthrough

And now we can make a critical observation:

after removal of any one number from a peculiar set of
natural numbers the sum of the remaining numbers is even.

Would you agree?
Hence

in a peculiar set of integers, all numbers have the same
parity: either

(a) they are all even,or

(b) they are all odd.

It is a significant progress: we know something new about peculiar
sets. On a way to a solution, we started to develop a small theory, a
toy model of mathematics.

2.5.  One more transformation preserving peculiarity
In case (a) — when all numbers in the set are even — we have one
more transformation which preserves the peculiarity of the set:

Division by 2: if all numbers are even, divide them all by 2
— the resulting set of numbers is still peculiar.

It makes sense to apply this operation every time we can: we get a new
peculiar set with smaller numbers, hence a simpler problem.

In case (b) we can apply the already familiar

Subtraction of 1:if all numbers in the set are odd, subtract
1 from all numbers. Again, we get a new peculiar set, but
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with smaller numbers — and all numbers in this new set are
even.

2.6. Impossibility of infinite descent

So, given a peculiar set, we can make from it a new peculiar set with
smaller numbers by applying either subtraction of 1, or division by 2.

If in the new set all numbers are equal, then in the original set all
numbers were equal, too. So we found a way to reduce our problem to a
problem with strictly smaller numbers. In mathematics, there is name
for this reduction: descent.

And we can continue this process for ... Not forever; sooner or later
one of the numbers becomes 0.7 If numbers are all zeroes, we are done:
this means that in the original set all numbers were equal.

So we need to exclude the possibility for a peculiar set to contain at
least one number 0 and at least one non-zero number. Since 0 is an even
number, all numbers in the set are even. Now continue with divisions
by 2 (which do not change our number 0), until some number in the
set becomes odd. But this is impossible, since 0 and this number have
different parities.

This completes the proof. O

3. Discussion

3.1. Compression of thought

The proof can be compressed into one paragraph, and this is what
was my original solution.

After removal of any one number the sum of the remaining
numbers is even. Hence all numbers have the same parity:
either they are all even, or they are all odd. In the former
case, divide all numbers by 2. In the latter, subtract 1 from
all numbers. In both cases we get the same problem, but
with smaller numbers, and this continues until one of the
numbers becomes 0. If now numbers are all zeroes, we are

TThis observation has a name in mathematics: the Principle of Infinite Descent (a better name
would perhaps be Impossibility of Infinite Descent); it was formulated in modern terms by Pierre
Fermat.
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done. Assume that there is a non-zero number left. Now
divide all numbers by 2 and continue that until some other
number becomes odd. This is a contradiction: numbers now
have different parities.

Unfortunately, in this compressed solution we loose most of the colours
and shades of the delicate transformation of the problem.

When adult mathematicians solve relatively elementary problems like
this one, their thinking is usually compressed; the words like “infinite
descent” just flash in their brains for a split second, barely registered
by the conscious part of mind. However, children have to solve their
first problems step-by-step — but given support and freedom, they can
quickly develop ability to compress their thinking. Actually, a tendency
to rapid abbreviation, compression of reasoning in problem solving is a
a characteristic trait of the so-called “mathematically able” children?.

Discussion of the 101 COINS problem was started, in a circle of math-
ematician friends, by my good colleague Hovhannes Khudaverdyan. He
formulated it in a more general form, when instead of values of coins
(which are positive integers), we are given their weights (which can be
arbitrary positive real numbers).

101 COINS, BY WEIGHT RATHER THAN BY VALUE. We are
given 101 coins such that after removal of any one of them
the remaining coins can be redistributed in two groups of
50 coins in such a way that the sum of weights of coins
in each group is the same. Prove that all coins have equal
weights.

Khudaverdyan found a solution based on manipulation with determi-
nants which was simplified by James Montaldi by switching, at some
crucial point, to calculation over Z/27 — that is, with symbols 0 and
1 which represent “even” and “odd”; more on that later. To say the
truth, I did not follow the discussion until Khudaverdyan emailed to
us a solution proposed by Alexander Karabegov. My eye caught the
phrase “To avoid dealing with 2-adic numbers. .. . After that I wrote,
on the spot, the one paragraph solution and emailed it to friends. For
a mathematician, the word “2-adic” suffices. Here, I prefer not to go
into 2-adic numbers into any detail, but still wish give a hint at what
it means — see the next two Sections.

tSee A. V. Borovik and A. D. Gardiner, Mathematical abilities and mathematical skills, The De
Morgan Journal 2 no. 2 (2012) 75-86. bit.ly/2jTYy4r.
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3.2.  Further compression of solution: base 2 arithmetic

The 101 CoOINS problem (for natural numbers) is one of the cases
when base 2 arithmetic is useful.

Indeed, solution of the 101 CoOINS problem is a hidden calculation
in base 2 arithmetic: dividing by 2 is crossing out 0 in the rightmost
position, subtraction of 1 is replacement of 1 in the rightmost position
by 0: number 7 = 1112 becomes 110p,662 = 6, and 6 = 110pa0 2
becomes 11},6c2 = 3.

As you can see, the solution becomes really short.

3.3. 2-adic integers
And now a few words about 2-adic integers: they are numbers written
in base 2 which are allowed to go to infinity to the left, something like
+++1010101page 2 Or -+ - 11111150 2 (in the latter, all symbols are 1),

with usual operations of (long) addition and (long) multiplication, but
with unusual results: notice that

<+ 111111 1pase 2 + - - - 0000001 pase 2 = - -+ - 0000000pase 2 = O,

hence
< 1111  pase 2 (all 17s) = —1.

Every natural number is of course a 2-adic integer; for example,

7 ="---00111pase 2 (infinitely many 0’s).

4. The problem in the context of linear algebra

And now we switch the point of view and look at the problem in the
context of linear algebra.

4.1. Generalisation to real numbers

But what if numbers involved are not natural, but arbitrary real
numbers?

First of all, if we have a peculiar set of rational numbers, we can
multiply them all by their common denominator and turn them all
into integers. The we can add to them all a sufficiently large positive
integer and make them all positive integers, that is, natural numbers.
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This new set of numbers is still peculiar, hence all numbers in it are
equal, hence all original numbers are equal.

The case of an arbitrary peculiar set of real numbers can be reduced
to the rational case, the argument is very simple and short, but uses
some abstract linear algebra which lies beyond skills of most gradu-
ates of mathematics departments of British universities. The following
argument was produced by Alexander Karabegov.

Let n be an odd natural number and X = {1, z9,...,2, }
be a peculiar set of real numbers. Consider the Q-vector
space spanned by X in R and let B = {by,...,b; } be its
basis. Then each z; can be written as a linear combination
of b;’s with rational coefficients,

€T; = E aijbj-

Observe that, for each 7, the rational numbers
alj, a'2j7 e ,Clnj

form a peculiar set, hence are equal. But this means that
all z; are equal. O

At a philosophical level, we deal with two completions of rational
numbers: non-Archimedean (2-adic numbers) and Archimedean: real
numbers. The link between the two via a basis in a vector subspace
over Q in R strikes by its demonstrative, in-your-face, discontinuity:
numbers in a peculiar systems of natural numbers obtained from

{Il,l’g,...,l’n}

cannot be represented by continuous functions of z;, za, ..., z,!

4.2. A matriz algebra solution: back to integers

Finally, without reduction to rational numbers and to integers, the
proof can be done by matrix theory, by analysing eigenvectors and
eigenvalues of the matrix of the system of simultaneous linear equations
in unknowns x1, xs, ... 100, - - ., 2101 Which stand for numbers forming
a peculiar set. What follows is a proof developed by James Montaldi
from the original proof by Hovhannes Khudaverdyan.

Denote the numbers in a peculiar set by { x1, s, ..., z101 }. The prob-
lem evidently is reduced to the following matrix problem.

1 leave proof of this fact as an exercise to the reader.
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First of all, write our peculiar set as a vector,
xr = (ZL‘l, Ce ,5(7101).

Consider a matrix of the size 101 x 101, M = (my), i,k = 1,...,101,
such that all diagonal elements of this matrix are equal to zero and in
every row some 50 non-diagonal entries are equal to +1 and another
fifty non-diagonal entries are equal to —1. The peculiarity of the set
means that signs + and — can be chosen in such a way that

xM =0,
that is,  becomes an eigenvector for M for eigenvalue 0.

Please observe that we returned back into the domain of integers: the
weights x; are real, but the coefficients of the matrix M are integers!

It is time to recall that it is evident that the vector
e=(1,1,...,1)

is an eigenvector of the matrix M with eigenvalue 0. To solve the
problem, we need to prove that the space of zero eigenvectors is 1-
dimensional, hence x are e are collinear and therefore

Tl =Ty =+ = Tp.

In other words, we need to prove that the rank of the matrix M equals
to 100.

A this point the solution bifurcates into two different versions: calcu-
lation of the rank of of M by analysis of its characteristic polynomial
(original solution due to Hovhannes Khudaverdyan) and vector algebra
over Z/sZ7 (improvement suggested by James Montaldi).

4.3. Back to arithmetic modulo 2

Indeed, arithmetic modulo 2 comes into play in the following elegant
argument found by James Montaldi.

Consider the matrix A = M + I; all its entries are +1. Now consider
it modulo 2, treating entries as elements of the field of residues Z/27Z.
The vector e = (1,1,...,1) is an eigenvector of A for eigenvalue 1 over
rational numbers, that is, eigenvalue 1 over Z/27Z. But any vector over
7./27 orthogonal to e is an eigenvector of A for eigenvalue 0 over Z/27Z;
furthermore this vector is an eigenvector of M = A — I with eigenvalue
1. Hence M has rank 100 over Z/2Z and therefore rank 100 over Z.
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4.4. The characteristic polynomial of M : do we really stay in charac-
teristic 07

Hovhannes Khudaverdyan’s solution is based on the observation that
a 101 x 101 matrix M has rank 100 if and only it the multiplicity of
its eigenvalue A = 0 equals 1, which, in its turn, equivalent to the
coefficient a; for A in the characteristic polynomial

det(]\/[ — )\I) =ag + CL1>\ + -+ aloo)\loo — )\101

being not equal to zero. And this will be proven by showing, surprise-
surprise, that this coefficient is odd.

To do that, we need a bit of combinatorics. A derangement of a set
X is a permutation X — X without fixed points. Let us denote by
D(X) the set of all derangements of X. We will be working with 101
sets X; =4{1,2,3,...,100,101 } ~ {7}, where i =1,2,...,100, 101.

The definition of determinant gives us

101

ar= > sign(o) [] miou-

i=1 0eD(X;) JEX;

Observe that in the monom [ jex, Myo(j): €Very multiplicand m; 5(;) =
41, hence each sum

> sign(o) [ mieo

o€D(X;)j#t JEX;

has the same parity as the parity of the number of all derangements
in D(X;); we shall see in a second that their number |D(X;)| is indeed
odd, but let us first complete the proof: if D(X;) is indeed odd, then
a1 is the sum of 101 odd numbers and is therefore odd.

Why the number of derangements of a set of 100 (or any even number)
of elements is odd? This is a classical fixed-point free theorem from
finite group theory: the inverse of a derangements is a derangement, so
the map o — 0! is a involutive map of D(X;) onto itself; derangements
which are not involutions (that is, ¢ # o~! come in pairs {o,07!}.
Therefore the parity of D(X;) is the same as the parity of the set of
involutive derangements, that is, permutations of X; made of exactly
50 pairwise disjoint cycles (7, k) of length 2. But their number is odd —
for example, because products of 50 pairwise disjoint cycles of length
2 are conjugate in the symmetric group Sym,,, and belong to centers
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of Sylow 2-subgroups in Sym,,; of course, there are more elementary
proofst, but this is the one that instantly comes to my mind.

4.5. Further generalisations

First of all, observe that the matrix solution works for an arbitrary
field of characteristic 0 — and perhaps for an arbitrary field of charac-
teristic 2.

In odd characteristic, the statement is no longer true: the set of
residues modulo 5
0, 1,2, 3, 4
is peculiar:
1+4=2+3,0+2=3+4,0+44=1+3,0+1=2+4,0+3=1+2.

It is not surprising: in odd characteristic, the concept of parity has no
sense.

4.6. The moral of this tale

As you had a hance to see see, parity issues continued to chase us to
the bitter end. A naive, at the first glance, problem about 101 points
has impressive structural depth.

The following well-known image is one of many produced by Anatoly
Timofeevich Fomenko in his famous exploration of connections between
mathematics and visual arts. It is called “2-adic solenoid”, Figure 1.

I have to admit that I have no vaguest idea why it is 2-adic and why
it is a solenoid. Apparently what shown in this paper is just a tip of an
iceberg, 2-adicity goes even deeper into the heart of mathematics.
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FIGURE 1. A. T. Fomenko. 2-adic solenoid.
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