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Introduction

The aim of science is to seek the simplest explanations of complex facts.
We are apt to fall into the error of thinking that the facts

are simple because simplicity is the goal of our quest.
The guiding motto in the life of every natural philosopher should be,

“Seek simplicity and distrust it.”

Alfred North Whitehead

I contribute this paper to a volume on the fascinating topic of simplicity in math-
ematics1; my paper is about the role of simplicity and “economy of thought” in
mathematics education; it focuses on the early age, elementary level mathematics
education. Originally I was planning to extend the narrative at least up to Bour-
baki’s project (it is worth remembering that the latter started as a pedagogical exer-
cise2), but I soon discovered that elementary school mathematics already provided
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more material than I could fit in a paper. So I mention Bourbaki only briefly, see
Section 7.

This paper is not supposed to be a kind of theoretical musing; indeed many of its
passages come from my letters to education professionals and civil servants written
in 2011–14, mostly in the context of discussions around the National Curriculum
reform in England. The paper is written for adults, not for children – please do not
see it as a source of learning materials for primary school, even if most problems
are very accessible. The selection principle for problems was the potential depth of
didactic analysis that they allowed, not possibility of the immediate use in the class.

An emphasis on old Russian sources is easy to explain: I am frequently asked
to comment on the Russian tradition of mathematics education. The latter might
appear to be outdated (it suffices to say that the state and the social system where it
has flourished no longer exist), but, I believe, it continues to be relevant. After all,
as Stanislas Dehaene quipped in his book The Number Sense3,

We have to do mathematics using the brain which evolved 30 000 years ago for survival in
the African savanna.

For that reason, I believe, a discourse on mathematics education should involve
historic retrospection on a timescale longer than a few years or even a few decades.4

I focus on examples from arithmetic and from elementary set theory, mostly for
lack of space for anything else in a short paper, and I wish to warn those readers
who are not very familiar with mathematics:

Arithmetic is not the whole of mathematics, it is only one of its beginnings. Mathe-
matics competence is more than “numeracy” because even competence in arithmetic
is much more than “numeracy”.

I hope that the present paper proves this thesis. I can claim more:

Restricting mathematics education to teaching “numeracy”, “practical mathemat-
ics”, “mathematics for life”, “functional mathematics” and other ersatz products is
a crime equivalent to feeding children with processed food made of mechanically
reconstituted meat, hydrogenated fats, starch, sugar and salt.

– say, the celebrated Topologie générale – into true masterpieces of pedagogical exposition and
simplicity in mathematics. See L. Corry, Writing the Ultimate Mathematical Textbook: Nicolas
Bourbaki’s Éléments de mathématique, in The Oxford Handbook of the History of Mathematics
(E.Robson and J. Stedall, eds.). Oxford University Press, 2011, pp. 565–588, for more detail.
3 S. Dehaene, The Number Sense: How the Mind Creates Mathematics. Oxford University Press,
2000. ISBN-10: 0195132408, ISBN-13: 978-0195132403.
4 See more about mathematics education in Soviet Russia in my forthcoming paper The Golden
Age of Soviet mathematics education: The Ponzi scheme of social mobility.
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Following this culinary simile, real simplicity in mathematics education is not
fish nuggets made from “seafood paste” of unknown provenance, it is sashimi of
wild Alaskan salmon or Wagyu beef. Unlike supermarkets, huge Internet resources
provide ingredients for a simple, healthy, tasty, exciting, even exotic gourmet cuisine
for mathematics education for free. But we have no cooks.

1 What can be simpler than 3−1 = 2?

What follows is a translation of a fragment from Igor Arnold’s (1900–1948) paper
of 19465. It goes to the heart of the role of simplicity in mathematics education. For
research mathematicians, it may be interesting that I. V. Arnold was V. I. Arnold’s
father.

Existing attempts to classify arithmetic problems by their themes or by their algebraic struc-
tures (we mention relatively successful schemes by Aleksandrov (1887), Voronov (1939) and
Polak (1944) are not sufficient [. . . ] We need to embrace the full scope of the question,
without restricting ourselves to the mere algebraic structure of the problem: that is, to char-
acterise those operations which need to be carried out for a solution. The same operations
can also be used in completely different concrete situations, and a student may draw a false
conclusion as to why these particular operations are used.

Let us use as an example several problems which can be solved by the operation

3−1 = 2.

Igor Arnold then gives a list of 20 problems of which we quote only a few.

(a) I was given three apples, and then ate one of them. How many were left?
(b) A barge-pole three metres long stands upright on the bottom of the canal, with one metre

protruding above the surface. How deep is the water in the canal?
(c) Tanya said: “I have three more brothers than sisters”. How many more boys are there in

Tanya’s family than girls?
(d) How many cuts do you have to make to saw a log into three pieces?
(e) A train was due to arrive one hour ago. We are told that it is three hours late. When can we

expect it to arrive?
(f) A brick and a spade weigh the same as three bricks. What is the weight of the spade?
...

...

(s) It takes 1 minute for a train 1km long to completely pass a telegraph pole by the track side. At
the same speed the train passes right through a tunnel in 3 minutes. What is the length of the
tunnel?

These 20 completely different arithmetic problems, all solvable by the operation
3−1 = 2, make it abundantly clear that the so called “word problems” of arithmetic
involve identification of mathematical structures and relations of the real world and
mapping them onto better formalised structures and relations of arithmetic, or, in
Igor Arnold’s words,
5 I. V. Arnold, Principles of selection and composition of arithmetic problems, Izvesiya APN RS-
FSR 6 (1946) 8–28. (In Russian.)
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These examples clearly show that teaching arithmetic involves, as a key component, the
development of an ability to negotiate situations whose concrete natures represent very dif-
ferent relations between magnitudes and quantities.

And many of the 20 problems are deep – they are concerned with combinatorial
properties of sets of objects in the world, with geometry of space and time, and even
with what some adults call simplicial homology: Problem (d) is a one-dimensional
version of the Euler Formula and a seed (well, maybe a spore) of the entire algebraic
topology.

Even more important is Igor Arnold’s characterisation of arithmetic:

The difference between the “arithmetic” approach to solving problems and the algebraic
one is, primarily the need to make a concrete and sensible interpretation of all the values
which are used and/or which appear at any stage of the discourse.

I suggest that Igor Arnold’s observation deserves to be raised into one of the
characteristic aspects of simplicity in mathematics:

An important, and, at the early stages of mathematics education, predominantly im-
portant class of “simple” definitions, arguments, or calculations in mathematics is
the one where all intermediate structures and values have an immediate interpreta-
tion in some lower level and better understood mathematical theory, or in the “real
world” of physics, economics, etc.

I suggest calling it the Arnold’s Principle, intentionally blurring the line between
Igor Arnold and Vladimir Arnold; the famously controversial writings by the lat-
ter about mathematics education made it obvious that he was much influenced by
his father’s ideas6. Importantly, Vladimir Arnold republished his father’s paper and
endorsed it in his touching foreword7.

Among other, and much more advanced sources of simplicity in mathematics we
find abstraction by irrelevance: removal of all irrelevant details from a concept or a
statement and subsequent re-wording of the essence of the matter in a most general
form. The classical examples here are Bourbaki’s definition of uniform structure
and uniform continuity and Kolmogorov’s definition of a random variable as a mea-
surable function. Remarkably, both of these celebrated definitions have elementary
facets which allow them to be compliant with Arnold’s Principle. I briefly discuss
them later in the paper.

6 See, for example, V. I. Arnold, On teaching mathematics, Russ. Math. Surv. 53
no. 1 (1998), 229–236. http://iopscience.iop.org/article/10.1070/
RM1998v053n01ABEH000005.
7 I. V. Arnold, Principles of selection and composition of arithmetic problems. MCNMO, Moscow,
2008. 45 pp. ISBN 978-5-94057-425-5. (In Russian).
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2 Encapsulation and de-encapsulation

Arnold’s Principle fits into the all-important dynamics of encapsulation and de-
encapsulation in learning mathematics with precision so remarkable that it deserves
some analysis.

The terms “encapsulation” and “de-encapsulation” are not frequently used, and
a few words of explanation will be useful; I quote Weller et al.8:

The encapsulation and de-encapsulation of processes in order to perform actions is a com-
mon experience in mathematical thinking. For example, one might wish to add two func-
tions f and g to obtain a new function f +g. Thinking about doing this requires that the two
original functions and the resulting function are conceived as objects. The transformation is
imagined by de-encapsulating back to the two underlying processes and coordinating them
by thinking about all of the elements x of the domain and all of the individual transforma-
tions f (x) and g(x) at one time so as to obtain, by adding, the new process, which consists
of transforming each x to f (x)+ g(x). This new process is then encapsulated to obtain the
new function f +g.

Mathematical concepts are shaped and developed in a child’s mind in a recurrent
process of encapsulation and de-encapsulation, assembly and disassembly of math-
ematical concepts. It helps if building blocks are simple and easy to handle.

My computer science colleague commented on the quote above that the impor-
tance of encapsulation goes beyond mathematics education: it is an important con-
cept in practical computer programming, where it also helps if building blocks are
simple.9

3 De-encapsulation in action:
“questions” method

Here is an example of encapsulation and de-encapsulation in action10.
In 2011 I was asked by my American colleagues to give my assessment of math-

ematical material on the Khan Academy website11. Among other things I looked for
the so-called “word problems” and clicked on a link leading to what was called there
an “average word problem” but happened to be a “word problem about averages”.

8 K. Weller, A. Brown, E. Dubinsky, M. McDonald and C. Stenger, Intimations of infinity, Notices
Amer. Math. Soc. 51 no. 7 (2004) 741–750.
9 Chris Stephenson, Private communication.
10 I re-use some material from my paper (actually, a blog post in the pdf format) A. Borovik,
Relationality of teaching, the Khan Academy, and word problems, Selected Passages From Cor-
respondence With Friends, 1 no. 6 (2013), 45–50.http://www.borovik.net/selecta/
wp-content/uploads/2013/08/Selected_1_6_Word_Problems.pdf.
11 Khan Academy. http://www.khanacademy.org/about. Last Accessed 14 Apr 2011.
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Gulnar has an average score of 87 after 6 tests. What does Gulnar need to get on the next
test to finish with an average of 78 on all 7 tests?

Solution I. What follows are hints provided, one after another, by the Khan Academy
website:

Hint 1 Since the average score of the first 6 tests is 87, the sum of the scores of
the first 6 tests is 6×87 = 522.

Hint 2 If Gulnar gets a score of x on the 7th test, then the average score on all 7
tests will be:

522+ x
7

.

Hint 3 This average needs to be equal to 78 so:

522+ x
7

= 78.

Hint 4 x = 24.

Solution II. And here is how the same problem would be solved by the “steps” or
“questions” method as it was taught in Russian schools in 1950–60s.

Question 1 How many points in total did Gulnar get in 6 tests?
Answer: 6×87 = 522.

Question 2 How many points in total does Gulnar need to get in 7 tests?
Answer: 7×78 = 546.

Question 3 How many points does Gulnar need to get in the 7th test?
Answer: 546−522 = 24.

Questions 1 and 2 represent the de-encapsulation of the concept of average. And
this disassembly, de-encapsulation, makes the solution very simple.

Solution III. There is a quicker solution12 which requires understanding of averages
beyond straightforward de-encapsulation:

Question 1 How many “extra” – that is, above the requirement – points did Gulnar
get, on average, in 6 tests?
Answer: 87−78 = 9.

Question 2 How many “extra” points does Gulnar have?
Answer: 9×6 = 54.

Question 3 How many points does Gulnar need to get in the last test?
Answer: 78−54 = 24.

Finding this solution is next to impossible without mastering some higher level
thinking – I will return to this issue in the next Section.

12 Suggested by John Baldwin.
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4 Self-directing questions

Crucially, the whole point of the “questions” method is that questions are not sup-
posed to be asked by a teacher: students are taught to formulate these questions
themselves.

Teaching the “questions method” focuses on the development of each student’s
ability to start his/her “questions” attempt at a word problem asking himself or her-
self appropriate self-directing questions (they are called auxiliary questions in the
Russian pedagogical literature, but in England, the words “an auxiliary question” are
loaded with expectation that the question is asked by a teacher to help a struggling
pupil).

In the case of Gulnar’s problem, these self-directing questions are likely to be
something like

Solution II, Question A “Gulnar has an average score of 87 after 6 tests.” What
questions can be asked about these data?

Solution II, Question B “Gulnar needs to get an average of 78 on all 7 tests.” What
questions can be asked about these data?

Solution II, Question C “Gulnar has 522 points. She needs 546 points.” What
questions can be asked about these data?

Therefore the use of the “questions” method in mathematics education involves
gently nudging a child towards reflection and analysis of his/her own thought pro-
cess. This should be done, it needs to be emphasised, at a level actually accessible to
the child—and this can be done, as it was confirmed by mathematics education prac-
tice of dozens of countries around the world. I prefer the term “questions method”
to the more commonly used, in British education literature, name “steps method”
because the word “‘questions” emphasises the pro-active and reflective components
of thinking, while the word “steps” might inadvertently imply a passive procedural
approach.

And what is even more important, self-directing questions are meta-questions,
that is, questions aimed at finding the optimal way of reasoning.

From a basic pedagogical point of view, if the didactic aim of the problem is
to reinforce the understanding of particular concept (say, averages – as in Gulnar’s
problem) then the “questions” method appears to be more useful; it gives a student
a joint and cohesive vision of the concept.

For a teacher, self-directing questions give a useful tool for assessment of didactic
aspects of a problem and its potential solutions. Let us look at possible self-directing
questions for Solution III:

Solution III, Question A “Gulnar has an average score of 87 after 6 tests. She
needs 78 points on average” What questions can be asked about these data?

We immediately see that, unlike in Solution II, a child has to handle two chunks
of information simultaneously, not one. Even more: some of this information –
namely, the number of previously taken tests – is unnecessary for the first step:
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Solution III, Question A* “In previous tests, Gulnar had an average score of 87.
She needs 78 points on average.” What questions can be asked about these data?

But initially discarded information re-appears at the second step:

Solution III, Question B “In each of the 6 tests, Gulnar got, on average, 9 “extra”
– that is, above the requirement – points.” What questions can be asked about
these data?

Solution III, Question C “Gulnar has 54 extra points. She needs an average of 78
and has one more test to take.” What questions can be asked about these data?

I think a teacher may see that this approach requires from a student confident han-
dling of “structural arithmetic”, in terminology of Tony Gardiner13. Indeed, a men-
tal shortcut of Question A is meaningless if a student cannot see an arithmetic equiv-
alent of an algebraic identity

a1 +a2 + · · ·+an

n
−b =

(a1−b)+(a2−b)+ · · ·+(an−b)
n

hidden deep in the problem.
Tony Gardiner defines structural arithmetic as

an awareness of the algebraic structure lurking just beneath the surface of so many numer-
ical or symbolical expressions, as in

3×17+7×17 = . . .

or [. . . ]
16×13−3×34 = . . .

He adds:

This habit of looking for, and then exploiting, algebraic structure in numerical work is what
we call structural arithmetic.

And I hope that it is obvious to the reader that a self-directing question is an
application of Arnold’s Principle, a pro-active response to

the need to make a concrete and sensible interpretation of all the values which are used
and/or which appear in the discourse

as formulated by Igor Arnold.
Julia Brodsky, one of the leaders of American mathematics homeschooling and

mathematical circles movement14, wrote to me:

13 See Section 2.1.1.2 in A. D. Gardiner, Teaching mathematics at secondary level, The De
Morgan Gazette 6 no.1 (2014), 1–215. http://education.lms.ac.uk/wp-content/
uploads/2014/07/DMG_6_no_1_2014.pdf.
14 See her book J. Brodsky, Bright, Brave, Open Minds: Engaging Young Children in Math Inquiry.
Natural Math, 2015. ISBN-10: 0977693988. ISBN-13: 978-0977693986.
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Self-directed questions is probably the most important skill the students need to learn –
not only in math, but for their future life as well (and as a basis for critical thinking).
In my experience, the best way to teach that is to model the self-questioning in front of
the students by the teachers, as well as playing the “questions game” for novice students,
where the students first ask all types of questions about the problem, and then select the
most useful ones. This is a skill that takes time and nurturing, and should be taught to the
teachers as one of the basic tools.

In my opinion, as far as didactics of mathematics is concerned, mathematics home-
schoolers and mathematics circles volunteers are ahead of the game in comparison
with the mainstream mathematics educators – this is a very symptomatic develop-
ment which I discuss elsewhere15.

5 Distributed quantities

It is time to take a closer look both at the differences and at the deep connections
between arithmetic and algebra (and other chapters of more advanced mathematics)
as emphasised by Igor Arnold:

The difference between the “arithmetic” approach to solving problems and the algebraic
one is, primarily the need to make a concrete and sensible interpretation of all the values,
relations and operations which are used and/or which appear at any stage of the discourse.

Obviously, not every algebraic problem can be solved by arithmetic means. Still, the
power of arithmetic should not be underestimated.

My favorite example is Markov’s Inequality:

If X is any nonnegative random variable and a > 0, then

P(X ≥ a)≤ E(X)

a
.

It is the first fundamental result of the theory of random variables—and the basis of
the entire statistics.

In its essence, Markov’s Inequality is a primary school level observation about
inequalities and can be formulated as an arithmetic “word problem” about anglers
and fish.

What I formulate now is a result of a very straightforward didactic transformation
of Markov’s Inequality: de-encapsulation

• of mathematical expectation (or average – recall Gulnar’s problem), and
• of probability in its frequentist interpretation,

followed by substitution of concrete values:
15 A. V. Borovik, Calling a spade a spade: Mathematics in the new pattern of division of labour.
In Mathematical Cultures: The London Meetings 2012–14 (B. Larvor, ed.). Trends in the
History of Science, Springer, 2016, pp. 347–374. ISBN 978-3-319-28580-1. DOI 10.1007/978-
3-319-28582-5 20. A pre-publication version without editorial changes mad by the publisher:
goo.gl/TT6ncO.
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If 10 anglers caught on average 4 fish each, then the number of anglers who caught 5 or
more fish each is at most 8.

A proof of this statement is simple. Together, anglers caught 10× 4 = 40 fish.
Assume that there were more than 8 anglers who caught at least 5 fish each; then
these 8 anglers caught together more than 8×5 = 40 fish – a contradiction.

Unfortunately, we cannot expect that all students entering English universities
are able to produce this argument. There are three reasons for that:

• This is a proof.
• Even worse, this is a proof from contradiction.
• The argument requires simultaneous handling of two types of inequalities, “x is

more than y”, denoted x > y, and “x is at least y”, denoted x≥ y. (I say more on
difficulties caused by relations “x is at least y” and “x is at most y” in Section 8.)

But the statement still belongs to the realm of arithmetic and we can continue its di-
dactic transformation16 by replacing “proof” by “solving” and converting the state-
ment into a proper “word problem”.

If 10 anglers caught on average 4 fish each, what is the maximal possible number of anglers
who caught 5 or more fish each?

And here is a solution.

Anglers caught 10×4 = 40 fish. So we have to distribute 40 fish between anglers in a way
ensuring that as many anglers as possible get 5 or more fish. To achieve that, we should not
give more than 5 fish to an angler – that way more fish are left to other anglers, and more
of them get their 5 fish. Hence we give 5 fish to an angler. How many of them will get their
share? 40÷5 = 8 anglers.

Fish caught by anglers is a classical example of a random variable. In the context
of arithmetic, I would prefer to use the words “distributed quantity”: it is a quantity
attributed to, or distributed among, objects in some class: fish to anglers, test marks
to students in the class, and, the last but not least, pigeons to pigeonholes, as in the
“Pigeonhole Principle”.17 Crucially, we are not interested in its specific values, but
only in how frequently particular values appear and how frequently they exceed (or
not) particular thresholds. Notice that, in the solution above, we manipulate fish as
a distributed quantity, limiting its dispensation to five fish per angler.

In short, what we have is a toy frequentist version of Kolmogorov’s definition of
a random variable as a measurable function.18 As simple as that.

16 A. Borovik, Didactic transformation in mathematics teaching, Selected passages from
correspondence with friends, https://www.academia.edu/189739/Didactic_
transformation_in_mathematics_teaching.
17 Indeed, I believe that the famous Pigeonhole Principle (it is traditionally formulated in one of
the simplest special cases, rather than in a “general” form):

“if you put 6 pigeons in 5 holes than at least one hole contains more than one pigeon”

should be part of the standard arithmetic curriculum. In the world of adult science, it is one of the
most basic concepts of Computer Science and Programming; mathematically, it belongs to Ergodic
Theory.
18 A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, 1933.
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6 The Arithmetic/Algebra boundary

Everything should be made as simple
as possible, but not simpler.

Apocryphal, attributed to A. Einstein

In previous sections we have explored implications of Arnold’s Principle, now
we turn our attention to is limitations.

I will be using a beautiful example promoted by Vladimir Arnold.
Vladimir Arnold once said in an interview19:

The first real mathematical experience I had was when our schoolteacher I.V. Morotzkin
gave us the following problem.

Two old women set out at sunrise and each walked with a constant speed. One went
from A to B, and the other went from B to A. They met at noon, and continuing
without a stop, they arrived respectively at B at 4pm and at A at 9pm. At what time
was sunrise on that day?

I spent a whole day thinking on this oldie, and the solution (based on what are now called
scaling arguments, dimensional analysis, or toric variety theory, depending on your taste)
came as a revelation.

The feeling of discovery that I had then (1949) was exactly the same as in all the subse-
quent much more serious problems – be it the discovery of the relation between algebraic
geometry of real plane curves and four-dimensional topology (1970), or between singular-
ities of caustics and of wave fronts and simple Lie algebra and Coxeter groups (1972). It is
the greed to experience such a wonderful feeling more and more times that was, and still is,
my main motivation in mathematics.

This is a very strong statement, and deserves some analysis.
A classical solution makes use of a chapter of arithmetic almost completely for-

gotten nowadays: theory of proportions. This solution is given below, and it demon-
strates a boundary between Arithmetic and Algebra: we see “intermediate values”,
in terminology of Igor Arnold, which have no obvious real world interpretation.

Assume that the two old women walked from A to B and from B to A, respec-
tively, and that they met at point M. Then the first lady covered the distance from A
to M in from sunrise to noon and then distance from M to B in 4 hours. Since she
walked at constant speed,

distance from A to M
distance from M to B

=
time from sunrise to noon

4 hours
.

Similarly, for the second woman

distance from M to A
distance from B to M

=
9 hours

time from sunrise to noon
.

19 S. H. Lui, An Interview with Vladimir Arnold, Notices of the AMS, 44 no. 4 (1997), 432–438.
http://www.ams.org/notices/199704/arnold.pdf.
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Since it does not matter in which direction we measure distance, from A to M or
from M to A, etc.,

distance from A to M
distance from M to B

=
distance from M to A
distance from B to M

and consequently we get a proportion

time from sunrise to noon
4 hours

=
9 hours

time from sunrise to noon
.

Solving it, we have

time from sunrise to noon =
√

4×9 =
√

36 = 6 hours.

Therefore the sunrise was 6 hours before the noon, that it, at 12−6 = 6am hours.
What is remarkable, if we trace the world lines of the two ladies on the time-

distance plane, we immediately discover that the proportions have immediate geo-
metric meaning and are related to similarity of triangles, Figure 1.

Fig. 1 We have from similarity of triangles a
t = t

b and t =
√

ab.

As we can see from this solution in its two shapes, arithmetic and geometric,
we have an uncomfortable operation of multiplying time by time, and, even worse,
extracting square root from the result.

Even worse, the diagram uses angles. I marked equal angles at the diagram due
to a kind of a Pavlovian dog reflex, because I was conditioned to behave that way at
school and retained the reflex for the rest of my life. But angles have no meaning on
the time-distance plane unless we are on the Minkowski plane of special relativity
theory with a fixed quadratic form relating time to space. So, if we use angles in the
solution, we are in a modernised version of the problem:

Two old women flew, on photon spaceships at speeds close to the speed of light, one from
galaxy A to galaxy B, and the other from B to A. They set out at . . . whoops! What does



Economy of Thought 13

it mean “they set out at the same time” if we are in the relativistic context? There is no
absolute time in the world of special relativity.

Luckily, angles can be removed from the geometric solution: instead of simi-
larity of triangles, we can stay within affine geometry and use, in the proof of the
proportion

a
t
=

t
b
,

properties of central projection from a line to a parallel line.
Still, this example shows that an attempt to look for an “immediate real world in-

terpretation” of intermediate values in a solution of a relatively elementary problem
can open Pandora’s box of difficult questions about relations between mathematics,
mathematical models of reality, and reality itself.

7 Uniform convergence and “likeness”

One day I will find the right words,
and they will be simple.

Jack Kerouac

Now I wish to discuss a beautiful application of the both Arnold’s Principle and
abstraction by irrelevance in “advanced” mahtematics

The concept of uniform continuity of a function, after a long and torturous de-
velopment20 was transformed, in André Weil’s paper of 193721, into a strikingly
abstract definition of uniform structure which uses only basic concepts of elemen-
tary set theory: sets and binary relations. Uniform structures had been immediately
adopted by Bourbaki; the concept became one of the crown jewels of his Éléments
de mathématique.

A definition of a uniform structure (and its developments, uniform space and
uniformly continuous function) is remarkably simple and uses only intuitive ele-
mentary set theory; it is a classical example of abstraction by irrelevance: all the
details and features of uniform continuity are stripped to the bare logical skeleton.

We start by defining a tolerance T on a set X as a reflexive (that is, for all x ∈ X ,
xT x holds) and symmetric (that is, for all x,y ∈ X , xTy implies yT x) binary rela-
tion on X . Tolerance is a mathematical formalisation of similarity or resemblance
relations between objects of the real world22.

A uniformity basis on X is a non-empty family T of tolerances on X which is

20 G. I. Sinkevich, History of the concept of uniform continuity and the idea of coverings of a
segment, Hist. Sci. Tech. 4 (2016), 3–17.
21 A. Weil, Sur les espaces à structure uniforme et sur la topologie générale, Act. Sci. Ind. 551
(1937), 3–40.
22 Yu. Schrader, Equality, Similarity, Order. Moscow, Nauka, 1971. (In Russian.)
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• closed under taking intersections (or conjunctions, which is an equivalent way of
saying): if T,S ∈T then T ∧S ∈T , and

• allows decomposition: for a tolerance T ∈T there exists a tolerance S ∈T such
that S◦S⊆ T .

Notice that the inclusion relation ⊆ and operations of intersection “∩” (which
is the same as conjunction “∧”) and composition “◦” of binary relations have very
intuitive meaning.

For example, the relation on the set of people

xSy⇔ s is a sibling of y

includes the relation
xBy⇔ s is a brother of y

and therefore B⊆ S.
Conjunction/intersection is also easy: let

xTy⇔ Tom thinks that x and y are alike

and
xSy⇔ Sarah thinks that x and y are alike

then
x(T ∧S)y⇔ Tom and Sarah both think that x and y are alike.

And here is an example of composition: if xC y means that a person x is a child of
a person y and xGz means that x is a grandchild of z then G = C ◦C. (One more
example of composition is given a few lines below.)

A canonical example of a uniformity basis is the one responsible for the uniform
continuity of real valued functions on the real segment [0,1] (Figure 2):

T = {Tn n = 1,2,3, . . .}, where

Tn =

{
(x,y) ∈ [0,1]× [0,1] : |x− y|< 1

2n

}
or, if you prefer predicates to sets,

xTny⇔ |x− y|< 1
2n .

The operation of composition is especially clear in that example: indeed,

Tn+1 ◦Tn+1 ⊆ Tn

because if
|x− y|< 1

2n+1 and |y− z|< 1
2n+1

then
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Fig. 2 Tolerance relation xT y⇔ |x− y| < 1
2 on the segment X = [0,1]. It is reflexive because it

contains the diagonal of the square X ×X and symmetric because it is symmetric with respect to
the diagonal.

|x− z| = |(x− y)+(y− z)|
≤ |x− y|+ |y− z|

=
1

2n+1 +
1

2n+1

=
1
2n .

(Actually, a uniform structure on X generated by a uniformity basis T is the
filter F on X×X generated by T , that is, the set of all binary relations on X which
include some tolerance from T .)

“Similarity”, “resemblance”, “likeness” – all that stuff formalised in the mathe-
matical concept of tolerance are real life concepts, sophisticated – see Figure 3, but
intuitively understood by young children. It looks as if kids can be really excited
by real life problems about choosing, identifying and sorting built around “resem-
blance” and “likeness”; such problems make an excellent propaedeutic for more
abstract mathematics.
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Fig. 3 M.C. Escher, Sky and Water I, 1938. This classical image is used by Yulii Schrader in
his book Equality, Similarity, Order as a warning: accumulation of small changes allowed by a
tolerance relation can completely change the object.

I will show to the reader examples taken from a little gem of early mathematics
education, the book Socks are like Pants, Cats are like Dogs23. As the title suggests,
most problems are about resemblance. Some of them require construction of a tol-
erance relation (but the term is of course not used in the book) on a finite set, see
Figure 4.

Problems on sorting, if described in technical terms, are about constructing
equivalence classes containing given objects when the equivalence is given as an
intersection of several tolerances (perhaps with subsequent taking the transitive clo-
sure).

The book says:

Too often the sorting jobs we give our children are not very challenging. Their young brains
are capable of differentiating complex patterns like those of identifying beetle families. Let
them flex these sorting muscles!

And children are asked to sort beetles, see Figure 5.
I would not mention these problems in my paper if I had not had a chance to

watch how 7 and 8 years old boys were sorting beetles with unbelievable enthusi-

23 M. Rosenfeld and G. Hamilton, Socks Are Like Pants, Cats Are Like Dogs: Games, Puzzles &
Activities for Choosing, Identifying & Sorting Math! Natural Math, vol. 4. Delta Stream Media,
2016. Print ISBN: 978-0-9776939-0-0.
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Fig. 4 “This game creates a chain of association between seemingly unrelated objects. Look at
each object in the puzzle and place them in the circles so that objects in connected circles share a
common trait.”

asm; the youngest was even more impressive, his attention was totally focused on
minute details of antennae, mandibles, legs, hairs, segmentation of bodies. Beetle
Sort works! Pedagogical advice given in the book is realistic and sound:

Encourage children to discuss why they think a beetle should be collected. Ask children
to explain their reasoning. Accept all answers with explanations as possibilities. Mistakes
should be expected. When working on the book, one of the authors (Dr. Gordon Hamilton)
solved two of the puzzles wrong, at least according to the current scientific classification
of beetles in the answer keys. Free play on their own terms helps children feel good about
math. Toward that goal, children can arrange beautiful beetles in their own ways. On the
other hand, tenacity in the face of failure also protects against math anxiety. To build up
tenacity, help kids to figure out how the scientific classification works.

I really love the last piece of advice:

If your child is getting frustrated, blame the beetles! It’s their fault the puzzle is so difficult!
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Fig. 5 The first “Beetle Sort” problem. “Follow the directions on the left side and collect only the
beetles that are indicated.”

8 Order and equivalence – and abstraction by irrelevance

There is a class of binary relations which is simpler than tolerance and is more
intuitive than any other kind of binary relations: strict order <. It is characterised
by axioms of transitivity:

it x < y and y < z than x < z

and anti-symmetricity:

x < y and y < x cannot be true simultaneously.

Notice that the anti-symmetricity implies the anti-reflexivity:

x < x is never true.

A classical “real life” example of a strict order is the relation on the set of people

x is a descendant of y.

A strict order relation is linear if

for every distinct x and y either x < y of y < x.

The descendence relation is not linear. But the counting order (well-known to most
children of age 4), that is, the strict ordering of natural numbers

1 < 2 < 3 < 4 < · · ·
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is the mother of all strict orders. The counting order is easy for children; but the
(non-strict) order x≤ y, that is, “x is less or equal y” might cause serious difficulties,
and not only at the primary school level. Every year, I meet a freshman in my class
(at a university!) who asks something like “How can we claim that 2 ≤ 3 if we
already know that 2 < 3?”.

Various kinship relations are remarkably self-evident to children, and for very
deep cognitive and evolutionary reasons – already apes and even monkeys have
sophisticated kinship systems.

Fig. 6 Life of a male Baboon is short and brutal.

The remarkable book Baboon Metaphysics24 provides some astonishing evi-
dence – and please notice that the book contains a formal definition of transitivity
of a relation:

The number of adult males in a baboon group at any given time ranges widely, from as
few as 3 to as many as 12. Regardless of their number, however, the males invariably form
a linear, transitive dominance hierarchy based on the outcome of aggressive interaction (a
linear, transitive hierarchy is one in which individuals A, B, C and D can be arranged in
linear order with no reversal that violate the the rule ‘if A dominates B and B dominates
C, then A dominates C’). Although the male dominance hierarchy is linear, transitive, and
unambiguous over short periods of time, rank changes occur often (Kitchen et al. 2003b),
and a male’s tenure in the alpha position seldom lasts for more than a year. [p. 51]

24 D. Cheney and R. Seyfarth, Baboon Metaphysics: The Evolution of a Social Mind. University
of Chicago Press, 2008. ISBN-10: 0226102440. ISBN-13: 978-0226102443.



20 Alexandre Borovik

Human boys in less humane places such as various kinds of borstals, reforma-
tories, and juvenile prisons form a similar strict linear order hierarchy recalculated
every day as a result of fights.

The hierarchy of female Baboons is more sophisticated and interesting. As em-
phasised in the book, it is “Jane Austen’s world”.

Fig. 7 Three generations of female Baboons. Baboons are inventors not only of the mathematical
concept of transitivity, but also of the social concept of Grandma.

Like males, female baboons form linear, transitive dominance hierarchies. There, however,
the similarity ends. Whereas male dominance ranks are acquired through aggressive chal-
lenges and change often, female ranks are inherited from their mothers and remain stable for
years at time. Furthermore, most female dominance interactions are very subtle. Although
threats and fights do occur, they are far less common and violent than fights among males.
Instead, most female dominance interactions take the form of supplants: one female simply
approaches another and the latter cedes her sitting position, grooming partner, or food. The
direction of supplants and aggression—and the resulting female dominance hierarchy—is
highly predictable and invariant. The alpha female supplants all others, the second-ranking
supplants all but the alpha, and so on down the line to the 24th- or 25th-ranking female,
who supplants no one. [p. 65]

Therefore it is not surprising that the concept of linear strict order is so self-
evident to humans. But anyone who taught freshmen knows that the concept of
equivalence relation is incomparably harder. The reason is that the transitivity of
dominance is obvious at the level of the monkey bits of our brains. But an equiva-
lence relation is, by definition, a transitive tolerance relation. Therefore

• an equivalence relation is a transitive “likeness”;
• a strict order is a transitive “unlikeness”.



Economy of Thought 21

This makes all the difference. If we understand “equality” in its common sense, as in
“all people are equal”, not in the sense of “identity” or “sameness”, then it appears
that the transitivity of equality is a much later, in evolutionary and historic terms,
social construct than the transitivity of “dominance” or “superiority”.

In a powerful scene in the film Lincoln25, Abraham Lincoln says to his astonished
aids:

Euclid’s first common notion is this: Things which are equal to the same thing are equal
to each other. That’s a rule of mathematical reasoning. It’s true because it works. Has done
and always will do. In his book, Euclid says this is ‘self-evident.’ You see, there it is, even
in that 2,000-year-old book of mechanical law. It is a self-evident truth that things which
are equal to the same thing are equal to each other.

The scene is a fiction, but a brilliant and very convincing fiction expressed in sim-
plest possible terms accessible to all cinema-goers. It is very true in its spirit to a
number of well-documented quotes from Lincoln where he uses references to Euclid
as a logical and rhetoric device:

One would start with confidence that he could convince any sane child that the simpler
propositions of Euclid are true; but, nevertheless, he would fail, utterly, with one who should
deny the definitions and axioms. The principles of Jefferson are the definitions and axioms
of free society. And yet they are denied, and evaded, with no small show of success. One
dashingly calls them ‘glittering generalities’; another bluntly calls them ‘self-evident lies’;
and still others insidiously argue that they apply only ‘to superior races.’26

I write this paper from the position of a remedial teacher at the school/university
interface, this is why I am keen to have a holistic view of mathematics education at
all levels, especially interconnections between various parts of mathematics as they
are presented to students starting from pre-school.

Unfortunately too many students reach mathematics courses at the university
level with ability for abstract thinking suppressed; even after three years in the uni-
versity, some of them still cannot make usable mental picture of abstract equivalence
relations.27 I wholeheartedly agree with one of the commentators on an earlier ver-
sion of my paper, Wes Raikowski, who wrote to me

“the series of abstractions and generalisations must, in my view, be rooted in one’s own
sensory experiences of bodily interactions with the physical world.”

Indeed, abstraction is negation, in Hegelian terms; it can start only when concrete
real mathematics (of Igor Arnold’s 3− 1 = 2 kind) is sufficiently interiorised by a
child in all its richness.
25 Lincoln, http://www.thelincolnmovie.com/. Director: Steven Spielberg; in the title
role: Daniel Day-Lewis; screenplay: Tony Kushner.
26 A. Lincoln, Collected Works, 3:375, quoted at C. S. Morrissey, Spielberg’s Lin-
coln: Politics as Mathematics, The Catholic World Report, December 19, 2012, http:
//www.catholicworldreport.com/Item/1822/spielbergs_ilincolni_
politics_as_mathematics.aspx; Morrissey, in his turn quoted G. Havers, Lincoln and
the Politics of Christian Love. Columbia, Missouri: University of Missouri Press, 2009, p. 72.
27 You will find more on that in my paper A. Borovik, The strange fate of abstract thinking. Selected
Passages From Correspondence With Friends 1 no. 3 (2013). 9–12. ISSN 2054-7145. bit.ly/
2907Mmi.
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This explains why

efficient abstraction by irrelevance is Arnold’s Principle in its dialectically negated
form:

in his/her first encounters with abstraction, a student has to have a clear under-
standing of what he or she discards, treats as irrelevant, abstracts away from.

When writing the paper, I was thinking about, and would love to be useful to,
a homeschooling parent or a leader of a mathematical circle, someone who was
engaged in a direct Socratic dialogue with children. Abstraction by irrelevance can
start by a casual remark from a teacher: “ah, it does not matter”, especially if this
remark is prepared in advance and strategically positioned. For example, write on a
board a problem

Mary has some cats and some chicken, and together her pets have 5 heads and 14 legs. How
many cats does Mary have?

and in the process of collective solving the problem start talking about dogs instead
of cats, triggering, with some luck, kids’ protests, and then lead children to recog-
nising that, in this problem, dogs and cats are interchangeable because they have the
same number of legs / paws.

One of the first examples of abstraction accessible to very young children is the
use of numbers as classifiers – dogs, cats, rabbits are quadrupeds, they have four
legs /paws. And what about kangaroo?

In Beetle Sort problems of Section 7, the number of legs is constant (six) but the
number of body segments varies from one family to another, and acts as a classifier
(not always sufficient – two different families of beetles might have the same number
of body segments – but still useful).

My university colleagues widely accept that the fundamental theorem:

equivalence classes of an equivalence relation E on a set X form a partition of X

is the Pons Asinorum of elementary set theory. In my classes, I do some propaedeu-
tics by preceding the introduction of this theorem by explaining, to my students,
that an equivalence relation E on a set X can in many cases be usefully thought
about in terms of a classifying function f : X −→ A to some simpler set A, with the
characteristic property that

xEy ⇔ f (x) = f (y).

In practical classification problems, it frequently happens that one number valued
function does not suffice, but even one function can make a decent approximation,
like a number of petals in a flower in Linnaeus’ celebrated classification of plant
species.

To summarise Sections 7 and 8: they provide an example of an advanced concept
of mathematics – uniformity – reducible, within bounds of Arnold’s Principle, to
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much simpler and much more intuitive concept of elementary set theory – tolerance
relations, while the latter are further reducible, again within bounds of Arnold’s
principle, to simple intuitive real life concepts of likeness and resemblance. But we
have also had a chance to see that two concepts closely related to tolerance relations:
equivalence and order – behave very differently when we try to find for them simple,
convenient, and intuitive “real life” interpretations.

9 Arnold’s Principle and the “questions method” in the historic
and social context

Igor Arnold’s paper of 1946 reflected the Zeitgeist of Russian culture in the after-
math of WWII: a quest for simple, reproducible, scalable solutions to technological
– and educational – problems.

Scalability (that is, feasibility of a wide, unlimited dissemination and implemen-
tation) is very difficult to achieve without simplicity, and a few words about scala-
bility need to be said.

As a child, I learnt the “questions” method in my primary school in a direct
face-to-face communication with a live teacher and with my peers, not from a video
recording on the Internet – as Khan Academy’s students learn mathematics – and I
describe it here as it was widely and routinely used in all primary schools in Rus-
sia in the 1960s. A colleague, responding to an earlier version of my notes on the
“questions method”, indicated that I was lucky to have an “excellent mentor” who
was using “the richness of the Socratic questioning”. I loved my teacher – but it
needs to be explained that she was a village school teacher in Siberia and was edu-
cated (up to the age of 16) in the same village school and then for two years (up to
the age of 18) in a pedagogical college in the town of Kyakhta – look it up on the
GOOGLE map! Even now its location can be best described as being in the middle
of nowhere – imagine what it was half a century ago!

If “policymakers” will ever read my paper, this is my message to them:

My teacher’s skills in arithmetic were a guaranteed and enforced minimum compul-
sory for every teacher.

Arnold’s Principle was just one example of didactics generated by an approach
to education based on scalable solutions at every level: in general education pol-
icy, in curriculum development, in methodology of mathematics education, in direct
recommendation to teachers on classroom practice.

But it should not be lost from the view that the mathematics education policy of
Russia at that time was concerned not only with achieving a “guaranteed minimum”
outcome, but also with educating an engineering and scientific elite.
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Only recently I learned how my alma mater, FMSh (the Physics and Mathematics
Preparatory Boarding School of Novosibirsk University)28, was born. It was one of
four specialist mathematics boarding schools (the famous Kolmogorov School in
Moscow was one of them) opened in 1963. What was not widely known for decades
that the decree of the Council of Ministers of the USSR was signed by an immensely
powerful man, Dmitry Ustinov, at that time the First Deputy Prime Minister. Ustinov
cared about mathematics – including elite, research level mathematics – this was
part of Zeitgeist. Actually, the FMSh came into existence before the decree was
formally signed – and no-one knew where the funds for its upkeep were coming
from. And the last but not least: the school was temporarily housed in a building
built for a new military academy for training Red Army’s political officers – and the
opening of the academy was for that reason postponed. This is what I call policy
priorities.

10 The economy of thought

A child of five could understand this.
Send someone to fetch a child of five.

Groucho Marx

Mentioning the FMSh, an academically selective establishment (to the extremes
of selectivity – the school had the catchment area with population of 40 million
people) allows me to move to discussion of a characteristic trait of many of so-called
“mathematically able” children29: “economy of thought”, a (mostly subconscious)
inclination to seek clarity and simplicity in a solution.

In relation to arithmetic, Arnold’s Principle shows that the “economy of thought”
means, first of all, ability to see relations, structures, symmetries of the “real world”
and use them to simplify arithmetic reasoning.

In Vadim Krutetskii’s classical study of psychology of mathematical abilities in
children30 the tendency for “economy of thought” is emphasised as one of the most

28 I describe the school in my paper: A. V. Borovik, “Free Maths Schools”: some inter-
national parallels. The De Morgan Journal 2 no. 2 (2012), 2335. http://education.
lms.ac.uk/wp-content/uploads/2012/02/FMSh.pdf. It is instructive to compare
my paper with an insider’s description of Lycée Louis-le-Grand in Paris: M. Lemme, Utter
elitism: French mathematics and the system of classes prépas, The De Morgan Journal 2 no.
2 (2012), 5–22. http://education.lms.ac.uk/wp-content/uploads/2012/02/
Louis-le-Grand1.pdf.
29 All children have mathematical abilities but not all of them are given a chance to develop them
in full.
30 V. A. Krutetskii, The Psychology of Mathematical Abilities in Schoolchildren. (Translated from
Russian by J. Teller, edited by J. Kilpatrick and I. Wirszup.) The University of Chicago Press,
1976. The Russian original was published in 1968; it was a serious study based on hundreds of
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important traits of the so-called “mathematically able” children. This is what he
writes about 8 years old Sonya L.

Sonya is notable for a striving to find the most economical ways to solve problems, a striving
for clarity and simplicity in a solution. Although she does not always succeed in finding
the most rational solution to a problem, she usually selects the way that leads to the goal
most quickly and easily. Therefore many of her solutions are “elegant.” What has been said
does not apply to calculations (as was stated above, Sonya is unfamiliar with calculation
techniques). Consider a few examples.

Problem:

“How much does a fish weigh if its tail weighs 4 kg, its head weighs as much as its
tail and half its body, and its body weighs as much as its head and tail together?”

Solution:

“Its body is equal in weight to its head and tail. But its head is equal in weight to its
tail and half its body, and the tail weighs 4 kg. Then the body weighs as much as 2
tails and half the body – that is, 8 kg and half the body. Then 8 kg is another half of
the body, and the whole body is 16 kg.”

(We omit the subsequent course of the solution. The problem is actually already solved.)

This remark:

Sonya is unfamiliar with calculation techniques

is very interesting: Sonya goes directly to what Igor Arnold describes as

concrete and sensible interpretation of all the values which are used and/or which appear
in the discourse.

Sonya identifies mathematical structures and relations of the real world and maps
them onto better formalised structures and relations of arithmetic, as it is obvious in
another episode from Krutetskii’s book:

Problem. A father and his son are workers, and they walk from home to the plant. The father
covers the distance in 40 minutes, the son in 30 minutes. In how many minutes will the son
overtake the father if the latter leaves home 5 minutes earlier than the son?

Usual method of solution [by 12-13 year old children]: In 1 minute the father covers 1/40
of the way, the son 1/30. The difference in their speed is 1/120. In 5 minutes the father
covers 1/8 of the distance. The son will overtake him in

1
8

:
1

120
= 15 minutes.

Sonya’s solution: “The father left 5 minutes earlier than the son; therefore he will arrive 5
minutes later. Then the son will overtake him at exactly halfway, that is, in 15 minutes.”

interviews, numerous tests and statistical analysis (Kruteskii even recieved advice on the use of
statistics from Andrei Kolmogorov).
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Sonya sees symmetries of the world – and not only in space, but in time, too (the
latter is more impressive) – and links the symmetry of time with symmetry of space.
For an adult, this relation is best expressed by the world lines of the father and the
son in the time-distance plane, Figure 8. We will never know what kind of picture
(if any) Sonya had in her mind, but she had a feeling of some essential properties of
this relation.

Fig. 8 This is what happens when two bodies move along the same distance from start to finish
with constant speeds, but one of them starts t minutes earlier and finishes t minutes later than
another: the faster body overtakes the slower one at mid-time and mid-distance. I leave it as an
exercise to the reader to check that this follows from a well-known theorem of affine geometry: the
two diagonals and the two midlines of a parallelogram intersect at the same point.

In Krutetsii’s words:

To a certain extent she is characterized by a distinct inclination to find a logical and math-
ematical meaning in many phenomena of life, to be aware of them within the framework of
logical and mathematical categories. In other words, her tendency to perceive many phe-
nomena through a prism of logical and mathematical relationships was marked at an early
age (7 or 8).

I wish to emphasise these words:

find mathematical meaning in phenomena of life.

Mathematics is simpler than life and for that reason helps to understand “phenomena
of life”. This is what mathematics education, especially early stages of mathematics
education, should be about: teaching students

• to see “phenomena of life” and use at least some basic mathematics vocabulary
and technique for their description and analysis,

and, conversely,
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• use their understanding of “mathematical meaning in phenomena of life” for
simplifying their mathematics.

These skills should not remain just an exotic trait of a small number of children
who somehow attained them by absorbtion from their cultural environment and, as
a result, are classified as “able” or “gifted”.

I firmly believe that every child should be given a chance to see “phenomena of
life” through mathematical lenses.

And the last but not the least: the anonymous referee suggested, in her/his most
helpful and enlightening comments, to move the mathematical material of this Sec-
tion to Section 6, and, as a consequence, put the world line diagrams of Figures 1
and 8 next to each other. I have some difficulty with that: the development of ele-
mentary mathematics can not be linear because we have mathematics for pupils and
mathematics for teachers which inevitably live in different dimensions. The time-
space plane of world lines is too hard for children, but, in my opinion, it should be
part of mathematics education of every primary school teacher.

11 A bonus of “economy of thought”: “reduced fatigability”

And this is another quote from Krutetskii:

The reduced fatiguability in mathematics lessons that characterizes Sonya should also be
noted. Not only is she very hard-working and fond of solving problems “on reasoning”:
she tires comparatively seldom during these lessons (excluding long, involved calculations,
which she does in her head). Neither the lessons at home nor those with the experimenter
were ever ended on her own initiative. Even prolonged lessons (for her age) did not lead
to marked fatigue. For experimental purposes we set up a few lessons with her of an hour
and a half, without interruption (a 45-minute lesson doubled!). Only at the very end of this
period did the little girl of 8 show signs of fatigue (mistakes, slackening of memory). When
occupied with other types of work (music, reading, writing), Sonya tires normally.

In Krutetskii’s voluminous book, Sonya is not the only subject. In particular, he
interviewed a number of school teachers. This is Krutetskii’s quote from one of
them:

“The mathematically able are distinguished by a striking ability not to tire even after ex-
tended lessons in mathematics. I have constantly noticed this. And for some of them mathe-
matics lessons are relaxing. This is probably related to the fact that a capable pupil spends
very little energy on what incapable pupils work to exhaustion doing” (Ya. D., 18 years of
service).

Millions of parents could only dream of their children attaining “reduced fatiga-
bility” in mathematics work.

I understand that I commit the mortal sin of using introspection as a source of
empirical evidence, but, as a research mathematician and teacher of mathematics
with 40 years of experience, I suggest that “spending very little energy” is directly
related to “economy of thought” and, in its turn, the “economy of thought”, at least
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at earlier stages of learning mathematics, is determined by the right balance of en-
capsulation and de-encapsulation in mathematical thinking.

These are skills and traits that can be developed in children. They are well-known
in pedagogical literature, and they are sometimes called “style”.

I quote from The Aims of Education31 by Alfred North Whitehead (of the Prin-
cipia Mathematica32 fame):

The most austere of all mental qualities; I mean the sense for style. It is an aesthetic sense,
based on admiration for the direct attainment of a foreseen end, simply and without waste.
Style in art, style in literature, style in science, style in logic, style in practical execution
have fundamentally the same aesthetic qualities, namely, attainment and restraint. The love
of a subject in itself and for itself, where it is not the sleepy pleasure of pacing a mental
quarter-deck, is the love of style as manifested in that study.

. . . Style, in its finest sense, is the last acquirement of the educated mind; it is also the
most useful. It pervades the whole being. The administrator with a sense for style hates
waste; the engineer with a sense for style economises his material; the artisan with a sense
for style prefers good work. Style is the ultimate morality of mind.

. . . Style is the fashioning of power, the restraining of power with style the end is attained
without side issues, without raising undesirable inflammations. With style you attain your
end and nothing but your end. With style the effect of your activity is calculable, and fore-
sight is the last gift of gods to men. With style your power is increased, for your mind is
not distracted with irrelevancies, and you are more likely to attain your object. Now style
is the exclusive privilege of the expert. Whoever heard of the style of an amateur painter,
of the style of an amateur poet? Style is always the product of specialist study, the peculiar
contribution of specialism to culture.

In children, “economy of thought” is still not a skill to work “without waste”, but
an instinctive striving to think economically and choose among possible approaches
to a problem the one which promises the most streamlined and elegant solution.

“Economy of thought” in young children can be compared with style in sport.
There were times, say, in swimming, when young boys and girls frequently won over
adults – and it was before steroids came into use. Interestingly, this more frequently
happened in long distance swimming, where economy of effort was paramount, and
not in short distances, where sheer power and force of adults prevailed.

As a boy in Siberia, I did a bit of cross-country skiing – without much success, I
have to say, but with great enjoyment. Aged 15, I knew a 12 years old girl from my
school who could beat me at any distance. She liked to tease 18 year old male army
conscripts on their compulsory 5 km skiing test, by flying past them, effortlessly
like a snowflake in the wind. For sweating and short-breath guys, it was the ultimate
humilation. The little girl had style.

But the correct technique, efficient style of swimming or skiing can be taught
– if training starts at a right age and done properly. The same can be achieved in
mathematics. It is simply a bit more expensive than the standard mass education

31 A. N. Whitehead, The Aims of Education and Other Essays. New York: Macmillan Company,
1929.
32 B. Russell and A. N. Whitehead, Principia Mathematica, Volume I-III. Cambridge: Cambridge
University Press, 1910, 1912, 1913.
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because it requires investment in proper mathematics and pedagogic education of
teachers, smaller classes, etc. – I do not wish to expand on the obvious.33

Still, “style” in the sense of Whitehead is not something which can be attained
at a very young age in a fully developed form. But it is something which (in case
of mathematics) can be irreversibly compromised at early stages of education if a
student accumulates bad habits and mannerisms.
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Fig. 9 The Nesin Mathematics Village and the Theatre Madrasa, near Şirince, Izmir Province,
Turkey. Simplicity is the cultural dominant of the Village. For example, reed mats protect the am-
phitheatre (seen in the foreground, left of the centre) from the sun but do not spoil its wonderful
open air “echo from the rocks” acoustic. Photo by Şükrü Yalçınkaya.
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