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LOGIC AND INEQUALITIES:
A REMEDIAL COURSE BRIDGING GCSE AND

UNDERGRADUATE MATHEMATICS

ALEXANDRE BOROVIK

Abstract

This paper is an informal discussion of a lecture course that, subject to approval, I plan to teach
next academic year in the Foundation Studies programme in my university. The course is set at
the level bridging GCSE Mathematics as it is taught to students up to the age of 16 in secondary
schools in England, and undergraduate mathematics courses for ages 18+. It does not overlap A
Level Mathematics and Further Mathematics as they are taught in England for ages 16 to 19. The
choice of material could be compared with A level Decision Mathematics—but does not duplicate
it. However, after some adjusting the course could perhaps make a decent alternative to Decision
Mathematics.

1. Introduction

The proposed course is an update of the course that I taught every Autumn since
2003.

Foundation Studies courses in mathematics are intermediate Year Zero courses of-
fered to students who were conditionally accepted to study at the university (mostly
in Engineering and other STEM degree programmes), but who had not studied,
or had not got good grades in, A Level Mathematics, or to students from overseas
whose school diplomas are not recognised in England. It is a big course, 350 students,
about 80 of them are foreigners.

Students in the course come from a variety of socioeconomic, cultural, educational
and linguistic backgrounds. Just at a level of basic notation, I have to deal with
students who, in their school mathematics, were using two different symbols for
multiplication:

2 · 3 = 6 and 2× 3 = 6,

and three different symbols for division:

6/3 = 2; 6 : 3 = 2; 6÷ 3 = 2.

Some countries use decimal point: π = 3.1415 . . . , while others prefer decimal
comma: π = 3,1415 . . .—this list can be easily continued.

Even more obstructive are invisible differences in the logical structure of my stu-
dents’ mother tongues. For example, the connective “or” is strictly exclusive in Chi-
nese: “one or another but not both”, while in English “or” is mostly inclusive: “one
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or another or perhaps both”. Meanwhile, in mathematics “or” is always inclusive
and corresponds to the expression “and/or” of the bureaucratic slang. The principle
of material implication:

it is true that “false” implies “true”

is unacceptable and even offensive to many students for deeply rooted cultural rea-
sons.

My course serves as an introduction to the language of mathematics (well, in its
English dialect), and to mathematical thinking. This explains the choice of mate-
rial which could be compared with A level Decision Mathematics—but does not
duplicates it.

Other Foundation Studies courses focus on more technical side of pre-calculus and
calculus.

2. Outline of the course

The course comprises 20 to 24 lectures of 50 minutes each, twice a week over 10
to 12 weeks, plus one tutorial class a week.

Sets (6 lectures). Sets and their elements, equality of sets. The empty
set and its uniqueness. Finite and infinite sets. N, Z, Q, R. Subsets,
union, intersection and complement. De Morgan’s Laws. Boolean alge-
bra of sets.

Logic (6 to 8 lectures). Propositional Logic: statements and connec-
tives. Conjunction, disjunction, negation, conditional, their interpreta-
tion in human languages. Truth tables. Material implication. Logical
equivalence and tautologies. Boolean Algebra of Propositional Logic.
Predicate Logic: predicates and relations. Universal and existential
quantifiers. Some basic logic equivalences of Predicate Logic.
Proof. Proof by contradiction. Proof by induction and computation by
recursion.

Inequalities (8 to 10 lectures). Inequalities. Methods of proof for in-
equalities. Solution of inequalities containing unknown variables. Linear
inequalities with one or two variables, systems of linear inequalities with
two variables. Graphic representation of the solution sets of inequalities.
Some simple problems of linear optimisation in two variables. Quadratic
inequalities with one variable.
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3. Backgrounds and justification

3.1. A very pragmatic justification.

The new course contains almost everything necessary for mathematically compe-
tent writing and handling macroses for time-dependent Excel spreadsheets—and
not much else. Time-dependent spreadsheets are daily bread of practical comput-
ing in engineering and business, they are the principal mathematical tool of project
management.

3.2. Why Logic?

For two principal reasons, one of which was already mentioned: cultural accommo-
dation of students from overseas. As I said, the connective “or” is strictly exclusive
in Chinese. But this is only the beginning: in Croatian, for example, there are two
connectives “and”: one parallel, to link verbs for actions executed simultaneously,
and another consecutive.

The second reason is that a reasonable grasp of propositional logic is useful for
learning programming languages and design of digital circuits, skills which are nec-
essary for almost all engineering disciplines.

3.3. Inequalities are crucially important for applications of mathematics

To give just a few examples,

– Anything which contains the word “estimate” in its name, whether it is in
Engineering or in Economics, is based on inequalities.

– Anything which contains the word “approximation” in its name, whether it is
in Engineering or in Economics, is based on inequalities.

– Anything which contains the word “optimisation” in its name, whether it is in
Engineering or in Economics, is based on inequalities.

In addition,

– Inequalities are mathematical tools for control of errors in measurement and in
experimental data, as well as for handling rounding errors in computations.

– Statistics is all about inequalities.
– Perhaps most importantly, the instinctive feel of inequalities makes the basis of

quick “back-of-the-envelope” estimates and “guesstimates”, the essential part
of engineering thinking.

In words of Bertrand Russell,

Although this may seem a paradox, all exact science is dominated by
the idea of approximation. When a man tells you that he knows the ex-
act truth about anything, you are safe in inferring that he is an inexact
man. Every careful measurement in science is always given with the prob-
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able error . . . every observer admits that he is likely wrong, and knows
about how much wrong he is likely to be. [Emphasis is mine.—AB]

3.4. Inequalities are badly taught at school.

Markov’s Inequality†, the first but fundamental result of the theory of random
variables—and the basis of the entire statistics—is no more than a primary school
level observation about inequalities and can be formulated as an arithmetic “word
problem” about anglers and fish:

50 anglers caught on average 4 fish each. Prove that the number of anglers
who caught 20 or more fish each is at most 10.

A solution is simple. Assume that there were more than 10 anglers who caught at
least 20 fish each; then these 10 anglers caught together more than 20 × 10 = 200
fish—a contradiction.

Unfortunately, we cannot expect that all students entering British universities are
able to produce this argument. There are two reasons for that:

– This is a proof from contradiction—and this is why basic proofs from contra-
diction are part of the course.

– The argument requires simultaneous handling of two types of inequalities, “x is
more than y”, denoted x > y, and ‘x is at least y”, denoted x ≥ y.

Alas, I many times met students who were asking me questions of that kind:

How can we claim that 3 ≥ 2 if we already know that 3 > 2?

This fallacy is a symptom of a dangerous condition—logical deficiency. Handling
inequalities demands stronger logical skills than mechanical manipulation of equa-
tions.

Moreover, inequalities are frequently more important than equations! For example,
besides the equation for a straight line in the plane,

ax+ by − c = 0,

closely related inequalities

ax+ by < c, ax+ by ≤ c, ax+ by ≥ c, ax+ by > c

are no less important: they describe the way the line cuts the plane in two halves
(and therefore have natural applications, say, in computer graphics). To give just
one example, here is a simple problem:

Answer without sketching graphs: do points (1, 3) and (−2, 4) lie to the
same side off the line

2x+ 3y − 1 = 0

or belong to the opposite sides?

†If X is any nonnegative random variable and a > 0, then

P(X ≥ a) ≤
E(X)

a
.
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Mathematical logic allows to see connections between inequalities and equations
which play an important role in many practical problems.

3.5. The natural affinity of the theory of inequalities and elementary logic

Inequalities fit happily into the course which starts with sets and logic not only
because they need logic, but also because, in a way of reciprocity, systems of simul-
taneous inequalities provide accessible material for learning and applying techniques
of logic, deduction and proof. Basic Boolean Logic: conjunction, disjunction, nega-
tion, comes into play very naturally. A system of two simultaneous inequalities is
the conjunction of inequalities, the solution set of the system is the intersection of
the solution sets of individual inequalities.

The inequality x2 > 1 is equivalent to the disjunction of inequalities x > 1 and
x < −1 and the solution set of x2 > 1 is the union of the solution sets of x > 1 and
x < −1:

{x | x2 > 1 } = {x | x > 1 } ∪ { x | x < −1 }

The negation of the inequality x2 > 1 is x2 ≤ 1, and the equation x2 = 1 is the
conjunction of inequalities x2 ≥ 1 and x2 ≤ 1:

(∀x)(x2 = 1↔ (x2 ≥ 1 ∧ x2 ≤ 1)).

Even more remarkable (and the reason why quadratic inequalities need to be dis-
cussed not only for their practical importance, but also as an illustrative material
for logic), that the inequality x > 1 implies the inequality x2 > 1,

(∀x)(x > 1→ x2 > 1),

but x2 > 1 does not imply x > 1,

¬(∀x)(x2 > 1→ x > 1),

or, rewriting this statement in a logically equivalent way,

(∃x)((x2 > 1) ∧ ¬(x > 1));

in plain language, it means

there exists x such that x2 > 1 but x ≤ 1.

Systems of simultaneous inequalities are predicates—unary, in case of systems of
inequalities in one variable, and binary—if we have two variables.

3.6. Is Logic too hard?

At an elementary restricted level—no, it is not not. Logical formulae that I gave
as examples might appear to be excessively complex. But the logical connectives ¬,
∧, ∨ are routine operators in computer coding. The universal quantifier ∀ and the
existential quantifier ∃, if used sparingly, help students to develop sharper reasoning
skills. In an example above, the statement

it is not true that x2 > 1 implies x > 1
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translates into symbolic notation as

¬(∀x)(x2 > 1→ x > 1),

and is logically equivalent to

(∃x)((x2 > 1) ∧ ¬(x > 1)),

which, in plain language, means

there is x such that x2 > 1 but x ≤ 1.

Without prior exposition to basic symbolic logic, many students would have diffi-
culties in understanding that the statement

(A) it is not true that x2 > 1 implies x > 1

is the same as

(B) there is x such that x2 > 1 but x ≤ 1.

My aim, of course, is to help my students to eventually see that (A) and (B) are the
same without resorting to logical symbolism. Graphic representation of inequalities
(and therefore some basic set-theoretic thinking) is a useful stepping-stone: both (A)
and (B) are equivalent to saying that

the set of solutions of x2 > 1 is not a subset of the set of solutions of
x > 1.

I will restrict the use of alternating quantifiers to gently introduced single change
cases, ∀∃ and ∃∀. Indeed, the ∀∃ combination already has to be handled with great
care, it triggers the explosion of infinity:

for every number there is a bigger number,

(∀x)(∃y)(x < y).

I will definitely avoid the notorious ∀∃∀, the perilous stumbling block of the ε-δ
language of the real analysis.
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