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A MONOTONOUS BOUNDED SEQUENCE
AS A METAPHOR FOR MATHEMATICS EDUCATION

ALEXANDRE BOROVIK

To the best of my knowledge, the vast majority of mathematics de-
partments in this country have already succumbed to the pressure to
slice examination questions into sub-questions and guide the candidate
through an increasingly long sequence of preset steps and sub-steps.

And here is an example taken from a website of one of the better
known universities; it appears to be a good simile for effects of this
examination setup on the quality of education.

1. (a) [7 marks| Show that if {a,} is a bounded monotone sequence of real

numbers then it is convergent.
(b) [13 marks| The sequence {a,} is defined by

g = C, (a + B)an—i-l = (an>2 + O‘B;

where 0 < a < ¢ < 3.
(i) Prove that, if {a,} converges to a limit a, then a = @ or a = §.
(ii) Prove that a, 1 —« and a, —«a have the same sign, and also a, 11— 03
and a,, — 3 have the same sign.
(iii) Prove that a,.1 < a, and hence that a, — a.

I argue that the label 1(b)(iii) and the word “hence” in this prob-
lem mark the beginning of the end of the candidate’s mathematics
education.

To illustrate that, let me re-formulate the problem in a less fractured
way.

1. Show that if {a,} is a bounded monotone sequence of real numbers
then it is convergent. Then use this fact to show that if the sequence

{a,} is defined by
ag = C, (O./ + B)an—i-l = (an)2 + Ofﬁ;
where 0 < a < ¢ < 3, then

a, — a.
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Of course, the second version is harder—but it is significantly less
confusing for a stronger student than the messed-up original version.
I also believe that students able to cope with the second version have
a good chance to progress further in their study of mathematics. On
the contrary, I think that slicing the question into steps is a tacit
admission, on part of the examiners, that their students have reached
their limits and are unlikely to progress further. Following hints is not
mathematics problem-solving!

I believe that assessment based on the assumption that all students’
intellectual potential is limited is unfair not only to stronger students,
it is unfair to all students. I adhere to John Dewey’s maxim:

The aim of education is to enable individuals to continue their educa-
tion ... [and] the object and reward of learning is continued capacity for
growth. Now this idea cannot be applied to all the members of a society
except where intercourse of man with man s mutual, and except where
there is adequate provision for the reconstruction of social habits and in-
stitutions by means of wide stimulation arising from equitably distributed
interests. And this means a democratic society.

Unfortunately, as I see it, examination practices of British universi-
ties limit the prospects of our students’ growth as mathematicians.
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