My answer to a question on Quora: **Is there any beginner friendly books about algebra?**

The answer depends on the level at which you wish to study algebra, and on your background. So I making two assumptions. The first one is

- You wish to study
*abstract algebra*at undergraduate level.

My second assumption involves a dichotomy. If you learn with an established education system and follow an established curricular path, then stick to textbooks which are normally used by colleges /universities in your country at the next stage of education.

If you are a self-learner or an advanced learner who is working ahead of curriculum, then I suggest to consider a truly classical book,

G. Bikhoff and S. Mac Lane,

A Survey of Modern Algebra.

Why? On the first page of *Preface* they say:

We have tried throughout to express the conceptual background of the various definitions used. We have done this by illustrating each new term by as many familiar examples as possible. This seems especially important in an elementary text because it serves to emphasize the fact that the abstract concepts all arise from the analysis of concrete situations.

They start the book with the most classical of all algebraic structures: the ring of integers and use it to introduce commutative integral domains. They do that long before they introduce groups. In my opinion, this is a right approach, to start with something very familiar. However, here is the catch: look at this paragraph from page 3:

They take for granted that the reader understands understands without further explanation this sentence:

In \(\mathbb{Z}[\sqrt{2}], \quad a+b\sqrt{2} = c+d\sqrt{2} \) if and only if \( a=c, \quad b=d\).

Is it familiar to you? If you can recognise in these words a classical and very old fact of mathematics (frequently mentioned in secondary school mathematics) than the book is perhaps for you.

So if you are a self-learner of mathematics (for example, if you are in a college or university where teaching is below your level) then you also have to take responsibility for gauging the level of your readiness for study of something new.