Evaluating students’ evaluations of professors

This paper contains some bizarre observations:
Michela Braga, Marco Paccagnella, Michele Pellizzari, Evaluating students’ evaluations of professors. Economics of Education Review 41 (214) 71-88.
Abstract: This paper contrasts measures of teacher effectiveness with the students’ evaluations for the same teachers using administrative data from Bocconi University. The effectiveness measures are estimated by comparing the performance in follow-on coursework of students who are randomly assigned to teachers. We find that teacher quality matters substantially and that our measure of effectiveness is negatively correlated with the students’ evaluations of professors. A simple theory rationalizes this result under the
assumption that students evaluate professors based on their realized utility, an assumption that is supported by additional evidence that the evaluations respond to meteorological conditions.

Meta-analysis of faculty’s teaching effectiveness: Student evaluation of teaching ratings and student learning are not related

An interesting paper:

Bob Uttl, Carmela A.White, Daniela Wong Gonzalez, Meta-analysis of faculty’s teaching effectiveness:  Student evaluation of teaching ratings and student learning are not related. Studies in Educational Evaluation, Volume 54, September 2017, Pages 22-42.

Abstract: Student evaluation of teaching (SET) ratings are used to evaluate faculty’s teaching effectiveness based on a widespread belief that students learn more from highly rated professors. The key evidence cited in support of this belief are meta-analyses of multisection studies showing small-to-moderate correlations between SET ratings and student achievement (e.g., Cohen, 1980, 1981; Feldman, 1989). We re-analyzed previously published meta-analyses of the multisection studies and found that their findings were an artifact of small sample sized studies and publication bias. Whereas the small sample sized studies showed large and moderate correlation, the large sample sized studies showed no or only minimal correlation between SET ratings and learning. Our up-to-date meta-analysis of all multisection studies revealed no significant correlations between the SET ratings and learning. These findings suggest that institutions focused on student learning and career success may want to abandon SET ratings as a measure of faculty’s teaching effectiveness.

The epigraph is great:

For every complex problem there is an answer that is clear, simple, and wrong.” H. L. Mencken

title = "Meta-analysis of faculty's teaching effectiveness: Student evaluation of teaching ratings and student learning are not related",
journal = "Studies in Educational Evaluation",
volume = "54",
number = "",
pages = "22 - 42",
year = "2017",
note = "Evaluation of teaching: Challenges and promises",
issn = "0191-491X",
doi = "http://dx.doi.org/10.1016/j.stueduc.2016.08.007",
url = "http://www.sciencedirect.com/science/article/pii/S0191491X16300323",
author = "Bob Uttl and Carmela A. White and Daniela Wong Gonzalez",
keywords = "Meta-analysis of student evaluation of teaching",
keywords = "Multisection studies",
keywords = "Validity",
keywords = "Teaching effectiveness",
keywords = "Evaluation of faculty",
keywords = "SET and learning correlations"

J. Algebraic Combinatorics: editors resign to start an open access journal

A press release from Mathematics in Open Access for Journal of Algebraic Combinatorics (2017-07-27) (see also a comment from Tim Gowers):

At the end of June 2017, the four editors-in-chief of the Journal of Algebraic Combinatorics informed Springer that they will not renew their contracts, which terminate on 31 December 2017. Nearly all of the editorial board members will also resign, to form the editorial board of a new journal that will be called Algebraic Combinatorics, run according to Fair Open Access Principles. The new journal Algebraic Combinatorics will be up and running very shortly, with interim editors-in-chief Satoshi Murai and Vic Reiner. The transition to Fair Open Access is supported by the organisation Mathematics in Open Access (MathOA). The editors of the Journal of Algebraic Combinatorics are Akihiro Munemasa, Christos Athanasiadis, Hugh Thomas and Hendrik van Maldeghem. Once their contracts with Springer expire, they will become editors-in-chief at Algebraic Combinatorics.

Why now? ‘There wasn’t a particular crisis. It has been becoming more and more clear that commercial journal publishers are charging high subscription fees and high Article Processing Charges (APCs), profiting from the volunteer labour of the academic community, and adding little value. It is getting easier and easier to automate the things that they once took care of. The actual printing and distribution of paper copies is also much less important than it has been in the past; this is something which we have decided we can do without’, says Hugh Thomas.

We were inspired by the Linguistics in Open Access (LingOA) project that flipped 4 journals in linguistics last year. We therefore also started a foundation Mathematics in Open Access (MathOA), that will help other journals in mathematics flip to Fair Open Access’ says Mark Wilson, one of the founding members of MathOA.



Two elementary problems

Sketch the curve given by parametric equations

(a) \(x =\cos^2 t, \; y = \sin^2 t\)

(b) \(x = e^t, \; y = e^{2t}\)


Portrait of a Mathematician, I

I am moving to my Selected Passages From Correspondence With Friends blog a collection of portraits of mathematicians which was spread on some my old blogs. But this is a new entry:

Musa Diplomatcia (Karin Kosina), by Fernando Mircala

Karen Cosina is a diplomat and an information security expert. The latter makes her a mathematician.


Physical intuition in the imaginary world

Paging through a wonderful book “An imaginary tale: The story of \(\sqrt{-1}\)” by Paul J. Nahin (strongly recommended!), I discovered this episode of history.

On 18 October 1740 Euler wrote to John Bernoulli that the solution to differential equation of a harmonic oscillator

\(y”+y=0\),  \(y(0)=2\), \(y'(0)=0\)

can be written in two ways:

\(y(x) = 2 \cos x\)


\(y(x) = e^{ix} + e^{-ix}.\)

He concluded from that

\(2\cos x =e^{ix} + e^{-ix}.\)

which was first step to his famous formula.

Obviously, Euler was using the uniqueness of a solution with given initial values. I bet his belief in the uniqueness was rooted in physical intuition. For him, expansion of mathematical language did not change his vision of the world.

Perhaps, 2oth century physicists weret thinking that an “imaginary” solution corresponds to something in the real world, something that was not discovered yet.


Sexism in action

[I repost my old post from now defunct blog. I wonder how much has changed over the years that passed?]
I had a conversation with a colleague from a Mathematics Department in a decent British University. Her Department adopted a remarkable policy in respect of pastoral care of students: all undergraduate students are assigned as personal tutees to 6 or 8 members of staff (of 32). My colleague, as a result, has about 60 personal tutees.

Of 32 members of academic staff, 3 are women. As the reader perhaps already expects, all of them got tutees. Apparently, pastoral care is considered to be women’s natural duty.

This shameful episode is a manifestation of a general principle that a “care” component, and, more generally, a “person-to-person interaction” component of work, so prominent in teaching, is systematically undervalued – and underpaid.

I quote from Paula England, Emerging theories of carework, Annu. Rev. Sociol. 2005. 31: 381–99 ; doi: 10.1146/annurev.soc.31.041304.122317 :

In more recent work, England and colleagues (2002) operationalized care work as those occupations providing a service to people that helps develop their capabilities. The main categories of jobs termed care work were child care, all levels of teaching (from preschool through university professors), and health care workers of all types (nurses aides, nurses, doctors, physical and psychological therapists). Controlling for skill demands, educational requirements, industry, and sex composition, we found a net penalty of 5%–10% for working in an occupation involving care.

One of the reason why “care component” is penalised because it is considered a more feminine function. The conclusion is striking:

We (male teachers) suffer from a typically anti-female form of discrimination.

Perhaps, this can help to convince even the worst male chauvinist pig that we all have to fight for gender equality in the workplace.