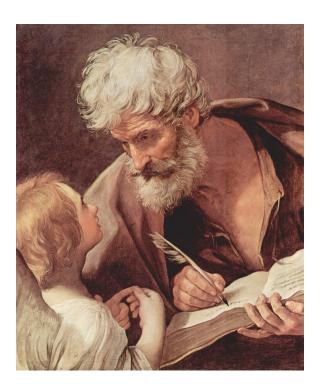
Alexandre V. Borovik


Shadows of the Truth: Metamathematics of Elementary Mathematics

Working Draft 0.826

February 28, 2014

American Mathematical Society

Fig. 0.1. L'Evangelista Matteo e l'Angelo. Guido Reni, 1630–1640. Pinacoteca Vaticana. Source: Wikipedia Commons. Public domain.

Guido Reni was one of the first artists in history of visual arts who paid attention to psychology of children. Notice how the little angel counts on his fingers the points he is sent to communicate to St. Matthew.

Preface

Toutes les grandes personnes ont d'abord été des enfants (Mais peu d'entre elles s'en souviennent.) Antoine de Saint-Exupéry, Le Petit Prince.

This book is an attempt to look at mathematics from a new and somewhat unusual point of view. I have started to systematically record and analyze from a *mathematical* point of view various difficulties experiencing by children in their early learning of mathematics. I hope that my approach will eventually allow me to gain a better understanding of how we—not only children, but adults, too—do mathematics. This explains the title of the book: *metamathematics* is mathematics applied to study of mathematics. I chase shadows: I am trying to identify and clearly describe hidden structures of elementary mathematics which may intrigue, puzzle, and—like shadows in the night—sometimes scare an inquisitive child.

The real life material in my research is limited to stories that my fellow mathematicians have chosen to tell me; they represent tiny but personally significant episodes from their childhood. I directed my inquiries to mathematicians for an obvious reason: only mathematicians possess an adequate language which allows them to describe in some depths their experiences of learning mathematics. So far my approach is justified by the warm welcome it found among my mathematician friends, and I am most grateful to them for their support. For some reason (and the reason deserves a study on its own) my colleagues know what I am talking about!

The book was born from a chance conversation with my colleague Elizabeth Kimber. I analyze her story, in great detail, in Chapter 5. Little Lizzie, aged 6, could easily solve "put a number in the box" problems of the type

by counting how many 1's she had to add to 7 in order to get 12 but struggled with

$$\Box + 6 = 11,$$

because she did not know where to start. Much worse, little Lizzie was frustrated by the attitude of adults around her—they could not comprehend her difficulty, which remained with her for the rest of her life.

When I heard that story, I instantly realized that I had had similar experiences myself, and that I heard stories of challenge and frustration from many my fellow mathematicians. I started to ask around—and now offer to the reader a selection of responses arranged around several mathematical themes.

A few caveats are due. The stories told in the book cannot be independently corroborated or authenticated—they are memories that my colleagues have chosen to remember. I believe that the stories are of serious interest for the deeper understanding of the internal and hidden mechanisms of mathematical practice because the memories told have deeply personal meaning for mathematicians who told the stories to me. The nature of this deep emotional bond between a mathematician and his or her first mathematical experiences remains a mystery—I simply take the existence of such a bond for granted and suggest that it be used as a key to the most intimate layer of mathematical thinking.

This bond with the "former child" (or the "inner child"?) is best described by Michael Gromov:

I have a few recollections, but they are not structural.

I remember my feeling of excitement upon hitting on some mathematical ideas such as a straight line tangent to a curve and representing infinite velocity (I was about 5, watching freely moving thrown objects). Also at this age I was fascinated by the complexity of the inside of a car with the hood lifted.

Later I had a similar feeling by imagining first infinite ordinals (I was about 9 trying to figure out if 1000 elephants are stronger than 100 whales and how to be stronger than all of them in the universe).

Also I recall many instances of acute feeling of frustration at my stupidity of being unable to solve very simple problems at school later on.

My personal evaluation of myself is that as a child till 8–9, I was intellectually better off than at 14. At 14–15 I became interested in math. It took me about 20 years to regain my 7 year old child perceptiveness.

I repeat Michael Gromov's words:

It took me about 20 years to regain my 7 year old child perceptiveness.

I am confident that this sentiment is shared by many my mathematician colleagues. This is why I concentrate on the childhood of mathematicians, and this is why I expect that my notes will be useful to specialists in mathematical education and in psychology of education. But I wish to make it absolutely clear: I am *not* making any recommendations on mathematics teaching. Moreover, I emphasize that the primary aim of my project is to understand the nature of mainstream "research" mathematics.

The emphasis on children's experiences makes my programme akin to linguistic and cognitive science. However, when a linguist studies formation of speech in a child, he studies language, not the structure of linguistics as a scientific discipline. When I propose to study the formation of mathematical concepts in a child, I wish to get insights into the interplay of mathematical structures in *mathematics*. Mathematics has an astonishing power of reflection, and a self-referential study of mathematics by mathematical means plays an increasingly important role within mathematical culture. I simply suggest to take a step further (or a step aside, or a step back in life) and to take a look back in time, at one's childhood years.

A philosophically inclined reader will immediately see a parallel with Plato's Allegory of the Cave: children in my book see shadows of the Truth and sometimes find themselves in a psychological trap because their teachers and other adults around them see neither Truth, nor its shadows. But I am not doing philosophy; I am a mathematician and I stick to a concise mathematical reconstruction of what the child had actually seen.

My book is also an attempt to trigger the chain of memories in my readers: even the most minute recollection of difficulties and paradoxes of their early mathematical experiences is most welcome. Please write to me at

borovik@manchester.ac.uk.

BIBLIOGRAPHY. At the end of each chapter I place some bibliographic references. Here are some (very different) books most closely related to themes touched on in this introduction: Aharoni [610], Carruthers and Worthington [642, 644], Freudenthal [667], Gromov [30], Krutetskii [827], and McManaman and Droujkova [720].

Alexandre Borovik Didsbury 12 February 2014

Acknowledgements

Fig. 0.2. Guido Reni. A fragment of *Purification of the Virgin*, c. 1635–1640. Musée du Louvre. Source: *Wikipedia Commons*. Public domain.

I am grateful to my correspondents

Ron Aharoni, JA, Natasha Alechina, Tuna Altınel, RA, Nicola Arcozzi, Pierre Arnoux, Autodidact, Bernhard Baumgartner, Frances Bell, SB, Mikhail Belolipetsky, AB, Alexander Bogomolny, RB, Anna Borovik (my wife, actually), Lawrence Braden, Michael Breen, TB, BB, Dmitri Burago, LB, CB, LC, David Cariolaro, SC, Emily Cliff, Alex Cook, BC, VČ, Jonathan Crabtree, Iain Currie, RTC,

PD, Yağmur Denizhan, Antonio Jose Di Scala, SD, DD, Ted Eisenberg, Theresia Eisenkölbl, RE, ŞUE, David Epstein, Gwen Fisher, Ritchie Flick, Jo French; Michael N. Fried, Swiatoslaw G., Herbert Gangl, Solomon Garfunkel, Dan Garry, Olivier Gerard, John Gibbon, Anthony David Gilbert, Jakub Gismatullin, VG, Alex Grad, IGG, Rostislav Grigorchuk, Michael Gromov, IH, Leo Harrington, EH, Robin Harte, Toby Howard, RH, Jens Høyrup, Alan Hutchinson, BH, David Jefferies, Mikhail Katz, Tanya Khovanova, Hovik Khudaverdyan, Elizabeth Kimber, EMK, Jonathan Kirby, SK, Ekaterina Komendantskaya, Ulrich Kortenkamp, Charles Leedham-Green, AL, EL, RL, DMK, JM, Victor Maltcev, MM, Archie McKerrell, Jonathan McLaughlin, Alexey Muranov, Azadeh Neman, Ali Nesin, John W. Neuberger, Joachim Neubüser, Anthony O'Farrell, Alexander Olshansky one man and a dog, Teresa Patten, Karen Petrie, NP, Eckhard Pflügel, Richard Porter, Hillary Povey MP, Alison Price, Mihai Putinar, VR, Roy Stewart Roberts, FR, PR, AS, John Shackell, Simon J. Shepherd, GCS, VS, Christopher Stephenson, Jerry Swan, Johan Swanljung, BS, Tim Swift, RT, Günter Törner, Vadim Tropashko, Viktor Verbovskiy, RW, PW, JW, RW, MW, Jürgen Wolfart, CW, Maria Zaturska, WZ and Logan Zoellner

for sharing with me their childhood memories and/or their educational and pedagogical experiences;

to parents of DW for allowing me to write about the boy;

and to my colleagues and friends for contributing their expertise on history of arithmetic and history of infinitesimals, French and Turkish languages, artificial intelligence, turbulence, dimensional analysis, subtraction, cohomology, *p*-adic integers, programming, pedagogy — in effect, on everything — and for sharing with me their blog posts, papers, photographs, pictures, problems, proofs, translations:

Santo D'Agostino, Paul Andrews, John Baez, John Baldwin, Oleg Belegradek, Marc Bezem, Julia Brodsky, Jonathan Crabtree, Adrien Deloro, Yağmur Denizhan, Maria Droujkova, Muriel Fraser, Michael N. Fried, Alexander Givental, AH, Mitchell Harris, Albrecht Heeffer, Roger Howe, Jens Høyrup, Jodie Hunter Mikael Johansson, Jean-Michel Kantor, H. Turgay Kaptanoglu, Serguei Karakozov, Mikhail Katz, Alexander Kheyfits Hovik Khudaverdyan, Eren Mehmet Kıral, David H. Kirshner, Semen Samsonovich Kutateladze, Vishal Lama, Joseph Lauri, Michael Livshits, Dennis Lomas, Dan MacKinnon, John Mason, Gábor Megyesi, Javier Moreno, Ali Nesin, Sevan Nişanyan, Windell H. Oskay, David Pierce, Donald A. Preece, Thomas Riepe, Jane-Lola Seban, Ashna Sen, Alexander Shen, Aaron Sloman, Kevin Souza, Chris Stephenson, Vadim Tropashko, Sergei Utyuzhnikov, Roy Wagner, Thomas Ward, David Wells, and Dean Wyles;

and to Tony Gardiner, Yordanka Gorcheva, Dan Garry, Olivier Gerard, Stephen Gould, Mikhail Katz, Michael Livshits, Alison Pease and Frederick Ross for sending me detailed comments on, and corrections to, the on-line version of the book and /or associated papers.

This text would not appear had I not received a kind invitation to give a talk at "Is Mathematics Special" conference in Vienna in May 2008, and without an invitation from Ali Nesin to give a lecture course "Elementary mathematics from the point of view of "higher" mathematics" at the Nesin Mathematics Village in Şirince, Turkey, in July 2008 and in August 2009. Section 10.1 was first published in a [106] in the proceedings volume of the Vienna conference edited by Benedikt Löwe and Thomas Müller. Parts of the text first appeared in *Matematik Dünyası*, a popular mathematical journal edited by Ali Nesin [627].

My work on this book was partially supported by a grant from the John Templeton Foundation, a charitable institution which describes itself as a

"philanthropic catalyst for discovery in areas engaging in life's biggest questions."

However, the opinions expressed in the book are those of the author and do not necessarily reflect the views of the John Templeton Foundation.

Finally, my thanks go to the blogging community—I have picked in the blogosphere some ideas and quite a number of references—especially to the late Dima Fon-Der-Flaass and to my old friend who prefers to be known only as Owl.

Alexandre Borovik Didsbury 12 February 2014

Contents

	Pref	face	v
	Ack	nowledgements	ix
1	Divi	ding Apples between People	1
	1.1	Sharing and dispensing	1
	1.2	Digression into Turkish grammar	3
	1.3	Dividing apples by apples: a correct answer	5
	1.4	What are the numbers children are working with? .	6
	1.5	The lunch bag arithmetic, or addition of	
		heterogeneous quantities	8
	1.6	Duality and pairing	9
	1.7	Adding fruits, or the augmentation homomorphism	10
	1.8	Dimensions	11
2	Peda	agogical Intermission: Human Languages	15
3	Unit	ts of measurement	21
	3.1	Fantasy units of measurement	21
	3.2	Discussion	23
	3.3	History	25
4	Hist	ory of Dimensional Analysis	29
	4.1	Galileo Galilei	30
	4.2	Froude's Law of Steamship Comparisons	32
		4.2.1 Difficulty of making physical models	32
		4.2.2 Deduction of Froude's Law	33
	4.3	Kolmogorov's "5/3" Law	34
		4.3.1 Turbulent flows: basic setup	34
		4.3.2 Subtler analysis	36
		4.3.3 Discussion	37
	4.4	Dimension of Lagrange multipliers	
	4.5	Length and area	40

Contentsxiv

5	Addi	ng One by One	47
	5.1	Adding one by one	47
	5.2	Dedekind-Peano axioms	49
	5.3	A brief digression: is 1 a number?	50
	5.4	How much mathematics can a child see at the	
		level of basic counting?	51
	5.5	Properties of addition	54
		5.5.1 Associativity of addition	55
		5.5.2 Commutativity of addition	56
	5.6	Dark clouds	57
	5.7	Induction and recursion	59
	5.8	Digression into infinite descent	61
	5.9	Landau's proof of the existence of addition	63
6	What	t is a Minus Sign Anyway?	67
•	6.1	Fuzziness of the rules	67
	6.2	A formal treatment of subtraction	69
	6.3	A formal treatment of negative numbers	70
	6.4	Testimonies	73
	6.5	Multivalued groups	75
7		nting Sheep	79
	7.1	Numbers in computer science	79
	7.2	Counting sheep	81
	7.3	Abstract nonsense	83
		7.3.1 Existence and uniqueness	83
		7.3.2 Unary algebras	83
		7.3.3 Proofs	84
	7.4	Induction on systems other than \mathbb{N}	84
	7.5	Categories	86
	7.6	Digression:	
		Natural numbers in Ancient Greece	87
8	Frac	tions	89
	8.1	Fractions as "named" numbers	89
	8.2	Inductive limit	91
	8.3	Field of fractions of an integral domain	94
	8.4	Back to commutativity of multiplication	95
9	Peda	gogical Intermission:	
		ctic Transformation	99
	9.1	Didactic transformation	99
	9.2	Continuity, limit, derivatives	
	9.3	Continuity, limit, derivatives:	
		the Zoo of alternative approaches	103
	9.4	Some practical issues	

Contents

10	Carr	ying: Cinderella of Arithmetic	111
	10.1	Palindromic decimals and palindromic polynomials	111
	10.2	DW: a discussion	115
	10.3	Decimals and polynomials: an epiphany	116
	10.4	Carrying: Cinderella of arithmetic	117
		10.4.1 Cohomology	117
		10.4.2 A few formal definitions	
		10.4.3 Limits and series	120
		10.4.4 Euler's sum	
	10.5	Unary number system	122
11	Peda	gogical Intermission:	
	Nomi	ination and Definition	127
	11.1	Names	127
	11.2		
12	The T	Towers of Hanoi and Binary Trees	135
13	Math	ematics of Finger-Pointing	137
	13.1	John Baez: a taste of lambda calculus	
	13.2	Here it is	
	13.3		
14	Num	bers and Functions	143
	14.1	Chinese Remainder Theorem	143
		14.1.1 History	143
		14.1.2 Simultaneous Congruences	144
		14.1.3 Algorithm	145
		14.1.4 Example	146
	14.2	The Lagrange Interpolation Formula	
	14.3	Numbers as functions	
15	Grap	h Paper and the Arithmetic of Complex	
	Num	bers	151
	15.1	Graph paper	151
	15.2	Pizza, logarithms and graph paper	153
	15.3	Multiplication of squares	155
	15.4	Pythagorean triples	157
16	Uniq	ueness of Factorization	
	16.1	Uniqueness of factorization	
	16.2	Dialog with AL	163
	16.3	Generalizations	
	16.4	The Fermat Theorem for polynomials	165
17	Peda	gogical Intermission: Factorization	167

Contents

18	The N 18.1	Notorious 80°–80°–20° Triangle	
19	Ethne	ographic Evidence	173
	19.1	What is ultraproduct?	
20	Conc	lusions	181
21	Being	g in Control	
	21.1	Leo Harrington: Who is in control?	
	21.2	The quest for truth	
	21.3	The quest for logic	
	21.4	The quest for understanding	
	21.5	The quest for power	
	21.6	The quest for rigour	
	21.7	Suspicion of easy options	
	21.8	"Everything had to be proven"	
	21.9	Raw emotions	$\dots 202$
	21.10	David Epstein: Give students problems that	
		interest them	
		Autodidact	
	21.12	Blocking it out	$\dots 209$
22	Cont	rolling Infinity	911
22	22.1	Fear of infinity	
	22.1	Counting on and on	
	22.2	Controlling infinity	
	22.3 22.4	Edge of an abyss	
	22.4	Euge of all abyss	221
23	Patte	rn Hunting	$\dots 225$
24	Visua	al Thinking vs Formal Logical Thinking	229
	24.1		
	24.2	EH: Visualisation	
	24.3	Lego	
25	Tallir	ng Left from Right	937
20	25.1	Why does the mirror change left and right but	201
	20.1	does not change up and down?	937
	25.2	Pons Asinorum	
	25.2 25.3	TB	
	25.3 25.4	Maria Zaturska	
	25.4 25.5	MP	
	25.6	Digression into ethnography	
	25.0 25.7	BB	
	25.7 25.8	PD	
	25.0 25.9	Digression into Estonian language	
	40.0	PIETOBBIOH HIM PROMIBILIAN BURGET	440

Contents xvii

	25.10	Standing arches, hanging chains	. 247
	25.11	Orientation of surfaces	. 248
26	The F	Birth of a Professional	249
	26.1	The Towers of Hanoi	
A	Moro	Personal Stories	951
A	A.1	Stories from non-mathematicians	
	A.1 A.2	Dennis	
	A.3	EMK.	
	A.4	Adrienne	
	A.5	PD	-
	A.6	SC	
	A.7	MW, continued	
	A.8	one man and a dog	
	A.9	SC	
	A.10	BB	
	A.11	IGG: sunflower phyllotaxis	
	A.12	EL	
	A.13	RT	
	A.14	Aldous Huxley	
	A.15	VM	
	A.16	FR	
	A.17	BC	
	A.18	SC	. 261
	A.19	PR	. 261
	A.20	RW	. 262
	A.21	AM	. 262
	A.22	FR	. 263
	A.23	VR	. 263
	A.24	WZ	. 263
	A.25	PW	. 264
	A.26	RB	. 265
	A.27	TE	. 265
	A.28	The ideal world	. 265
	A.29	Survivors	. 266
	A.30	SB	. 266
	A.31	MR	. 267
	A.32	Anthony P Stone	
	A.33	Jana Colchester	
	A.34	Colin Steele	
	A.35	Alan Hutchinson	
	A.36	Bheshaj Kumar Ashley Hoolash	
	A.37	Thomas Wolf	
	A.38	Dmitri Vassiliev	
	A.39	Rebecca Staatz	
	A.40	Toby Howard	. 272

xviii Contents

	A.41	David Jonah
	A.42	David Fremlin
	A.43	Max Neunhoeffer
	A.44	Archie McKerrell274
	A.45	Archie McKerrell, II
	A.46	Ron Aharoni
	A.47	Mihai Putinar
	A.48	ROY ROBERTS276
	A.49	Arieh Iserles
	A.50	Martin Griffiths
	A.51	Leonardo Burci
	A.52	Fred Holroyd
	A.53	Siu Man Keung
	A.54	Sutarto Hadi
	A.55	Olivier Gerard
	A.56	Maria Droujkova285
	A.57	Sergei Ovchinnikov
В	Dona	ald Knuth's letter on O-notation
Re	ferenc	ees
Ind	lov	330